diff --git a/tutorials/tutorial2_linear_systems.ipynb b/tutorials/tutorial2_linear_systems.ipynb index 5cc6b7b..f0bceb0 100644 --- a/tutorials/tutorial2_linear_systems.ipynb +++ b/tutorials/tutorial2_linear_systems.ipynb @@ -15,7 +15,7 @@ "## Motivation\n", "Why we care about solving Ax=b? in numerical methods (e.g., arises in ODEs, PDEs, optimization, physics).\n", "\n", - "Exact solution: $ x=A^{-1}b $, but computing $ A^{-1} $ explicitly is costly/unstable.\n", + "Exact solution: $x = A^{-1}b$, but computing $A^{-1}$ explicitly is costly/unstable.\n", "\n", "Numerical algorithms instead use factorizations or iterative schemes.\n", "\n", diff --git a/tutorials/tutorial3_orthogonalization.ipynb b/tutorials/tutorial3_orthogonalization.ipynb index 38a8a4b..42d0426 100644 --- a/tutorials/tutorial3_orthogonalization.ipynb +++ b/tutorials/tutorial3_orthogonalization.ipynb @@ -94,7 +94,7 @@ "q_1 = \\frac{a_1}{\\|a_1\\|}\n", "$$\n", "$$\n", - "q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}\n", + "q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}, \\qquad k = 2, \\ldots, n\n", "$$\n", "\n", "Matrix form:\n", @@ -236,17 +236,17 @@ "\n", "We want to solve\n", "\n", - "$$ \\min_x \\|Ax - b\\|_2. $$\n", + "$$ \\min_x \\Vert Ax - b \\Vert_2^2. $$\n", "\n", "If $A = QR$, then\n", "\n", - "$$ \\min_x \\|Ax - b\\|_2 = \\min_x \\|QRx - b\\|_2. $$\n", + "$$ \\min_x \\Vert Ax - b \\Vert_2^2 = \\min_x \\Vert QRx - b \\Vert_2^2. $$\n", "\n", - "Since $Q$ has orthonormal columns:\n", + "Since $Q$ has orthonormal columns, and the normal equations boils down to\n", "\n", - "$$ R x = Q^T b. $$\n", + "$$ R x = Q^T b, $$\n", "\n", - "So we can solve using back-substitution.\n" + "we can therefore solve for $x$ by using back-substitution.\n" ] }, { diff --git a/tutorials/tutorial4_root_finding.ipynb b/tutorials/tutorial4_root_finding.ipynb index e6b2270..af8f759 100644 --- a/tutorials/tutorial4_root_finding.ipynb +++ b/tutorials/tutorial4_root_finding.ipynb @@ -55,7 +55,7 @@ "source": [ "## 2. Bisection Method\n", "\n", - "**Assumption (Intermediate Value Theorem):** If f is continuous on ([a,b]) and (f(a),f(b) < 0),\n", + "**Assumption (Intermediate Value Theorem):** If f is continuous on $[a,b]$ and $f(a),f(b) < 0$,\n", "then there exists $x^\\star$ in (a,b) with $f(x^\\star)=0$.\n", "\n", "- Assumes $f$ is continuous on $[a,b]$ with $f(a)f(b)<0$.\n",