Upload files to "numethods"

This commit is contained in:
2025-09-11 16:38:39 +03:00
parent 48e54fde8d
commit 921d08e4e0
3 changed files with 307 additions and 0 deletions

12
numethods/__init__.py Normal file
View File

@@ -0,0 +1,12 @@
from .linalg import Matrix, Vector
from .orthogonal import (
QRGramSchmidt,
QRModifiedGramSchmidt,
QRHouseholder,
QRSolver,
LeastSquaresSolver,
)
from .solvers import LUDecomposition, GaussJordan, Jacobi, GaussSeidel, Cholesky
from .roots import Bisection, FixedPoint, Secant, NewtonRoot
from .interpolation import NewtonInterpolation, LagrangeInterpolation
from .exceptions import *

167
numethods/linalg.py Normal file
View File

@@ -0,0 +1,167 @@
from __future__ import annotations
from typing import Iterable, Tuple, List
from .exceptions import NonSquareMatrixError, SingularMatrixError
Number = float # We'll use float throughout
class Vector:
def __init__(self, data: Iterable[Number]):
self.data = [float(x) for x in data]
def __len__(self) -> int:
return len(self.data)
def __getitem__(self, i: int) -> Number:
return self.data[i]
def __setitem__(self, i: int, value: Number) -> None:
self.data[i] = float(value)
def copy(self) -> "Vector":
return Vector(self.data[:])
def norm_inf(self) -> Number:
return max(abs(x) for x in self.data) if self.data else 0.0
def __add__(self, other: "Vector") -> "Vector":
assert len(self) == len(other)
return Vector(a + b for a, b in zip(self.data, other.data))
def __sub__(self, other: "Vector") -> "Vector":
assert len(self) == len(other)
return Vector(a - b for a, b in zip(self.data, other.data))
def __mul__(self, scalar: Number) -> "Vector":
return Vector(scalar * x for x in self.data)
__rmul__ = __mul__
def dot(self, other: "Vector") -> Number:
assert len(self) == len(other)
return sum(a * b for a, b in zip(self.data, other.data))
def __repr__(self):
return f"Vector({self.data})"
class Matrix:
def __init__(self, rows: List[Iterable[Number]]):
data = [list(map(float, row)) for row in rows]
if not data:
self.m, self.n = 0, 0
else:
n = len(data[0])
for r in data:
if len(r) != n:
raise ValueError("All rows must have the same length")
self.m, self.n = len(data), n
self.data = data
@staticmethod
def zeros(m: int, n: int) -> "Matrix":
return Matrix([[0.0] * n for _ in range(m)])
@staticmethod
def identity(n: int) -> "Matrix":
A = Matrix.zeros(n, n)
for i in range(n):
A.data[i][i] = 1.0
return A
def copy(self) -> "Matrix":
return Matrix([row[:] for row in self.data])
def shape(self) -> Tuple[int, int]:
return self.m, self.n
def __getitem__(self, idx):
i, j = idx
return self.data[i][j]
def __setitem__(self, idx, value):
i, j = idx
self.data[i][j] = float(value)
def row(self, i: int) -> Vector:
return Vector(self.data[i][:])
def col(self, j: int) -> Vector:
return Vector(self.data[i][j] for i in range(self.m))
def transpose(self) -> "Matrix":
return Matrix([[self.data[i][j] for i in range(self.m)] for j in range(self.n)])
T = property(transpose)
def __matmul__(self, other: "Matrix") -> "Matrix":
"""Matrix multiplication with @ operator."""
if self.n != other.m:
raise ValueError("Matrix dimensions do not align for multiplication")
return Matrix(
[
[
sum(self.data[i][k] * other.data[k][j] for k in range(self.n))
for j in range(other.n)
]
for i in range(self.m)
]
)
def __mul__(self, other):
"""Overload * for scalar multiplication."""
if isinstance(other, (int, float)):
return Matrix([[val * other for val in row] for row in self.data])
raise TypeError("Use @ for matrix multiplication, * only supports scalars")
__rmul__ = __mul__
def is_square(self) -> bool:
return self.m == self.n
def augment(self, b: Vector) -> "Matrix":
if self.m != len(b):
raise ValueError("Dimension mismatch for augmentation")
return Matrix([self.data[i] + [b[i]] for i in range(self.m)])
def max_abs_in_col(self, col: int, start_row: int = 0) -> int:
max_i = start_row
max_val = abs(self.data[start_row][col])
for i in range(start_row + 1, self.m):
v = abs(self.data[i][col])
if v > max_val:
max_val, max_i = v, i
return max_i
def swap_rows(self, i: int, j: int) -> None:
if i != j:
self.data[i], self.data[j] = self.data[j], self.data[i]
def __repr__(self):
return f"Matrix({self.data})"
def forward_substitution(L: Matrix, b: Vector) -> Vector:
if not L.is_square():
raise NonSquareMatrixError("L must be square")
n = L.n
x = [0.0] * n
for i in range(n):
s = sum(L.data[i][j] * x[j] for j in range(i))
if abs(L.data[i][i]) < 1e-15:
raise SingularMatrixError("Zero pivot in forward substitution")
x[i] = (b[i] - s) / L.data[i][i]
return Vector(x)
def backward_substitution(U: Matrix, b: Vector) -> Vector:
if not U.is_square():
raise NonSquareMatrixError("U must be square")
n = U.n
x = [0.0] * n
for i in reversed(range(n)):
s = sum(U.data[i][j] * x[j] for j in range(i + 1, n))
if abs(U.data[i][i]) < 1e-15:
raise SingularMatrixError("Zero pivot in backward substitution")
x[i] = (b[i] - s) / U.data[i][i]
return Vector(x)

128
numethods/orthogonal.py Normal file
View File

@@ -0,0 +1,128 @@
from __future__ import annotations
from typing import List
from .linalg import Matrix, Vector, backward_substitution
from .exceptions import SingularMatrixError
class QRGramSchmidt:
"""Classical GramSchmidt orthogonalization."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.Q = Matrix.zeros(self.m, self.n)
self.R = Matrix.zeros(self.n, self.n)
self._decompose(A)
def _decompose(self, A: Matrix) -> None:
m, n = self.m, self.n
Qcols: List[Vector] = []
for j in range(n):
v = A.col(j)
for k in range(j):
qk = Qcols[k]
r = qk.dot(v)
self.R.data[k][j] = r
v = Vector([vi - r * qi for vi, qi in zip(v.data, qk.data)])
norm = sum(vi * vi for vi in v.data) ** 0.5
if abs(norm) < 1e-15:
raise SingularMatrixError("Linearly dependent columns in Gram-Schmidt")
self.R.data[j][j] = norm
qj = Vector([vi / norm for vi in v.data])
Qcols.append(qj)
for i in range(m):
self.Q.data[i][j] = qj[i]
class QRModifiedGramSchmidt:
"""Modified GramSchmidt orthogonalization."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.Q = Matrix.zeros(self.m, self.n)
self.R = Matrix.zeros(self.n, self.n)
self._decompose(A)
def _decompose(self, A: Matrix) -> None:
m, n = self.m, self.n
V = [A.col(j).data for j in range(n)]
for i in range(n):
vi = Vector(V[i])
norm = sum(v * v for v in vi.data) ** 0.5
if abs(norm) < 1e-15:
raise SingularMatrixError("Linearly dependent columns in MGS")
self.R.data[i][i] = norm
qi = Vector([v / norm for v in vi.data])
for r in range(m):
self.Q.data[r][i] = qi[r]
for j in range(i + 1, n):
r = qi.dot(Vector(V[j]))
self.R.data[i][j] = r
V[j] = [vj - r * qi_k for vj, qi_k in zip(V[j], qi.data)]
class QRHouseholder:
"""Stable QR decomposition using Householder reflectors."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.R = A.copy()
self.Q = Matrix.identity(self.m)
self._decompose()
def _decompose(self) -> None:
m, n = self.m, self.n
for k in range(min(m, n)):
x = [self.R.data[i][k] for i in range(k, m)]
normx = sum(xi * xi for xi in x) ** 0.5
if normx < 1e-15:
continue
sign = 1.0 if x[0] >= 0 else -1.0
u1 = x[0] + sign * normx
v = [xi / u1 if i > 0 else 1.0 for i, xi in enumerate(x)]
normv = sum(vi * vi for vi in v) ** 0.5
v = [vi / normv for vi in v]
for j in range(k, n):
s = sum(v[i] * self.R.data[k + i][j] for i in range(len(v)))
for i in range(len(v)):
self.R.data[k + i][j] -= 2 * s * v[i]
for j in range(m):
s = sum(v[i] * self.Q.data[j][k + i] for i in range(len(v)))
for i in range(len(v)):
self.Q.data[j][k + i] -= 2 * s * v[i]
self.Q = self.Q.transpose()
class QRSolver:
"""Solve Ax=b given QR (square A)."""
def __init__(self, qr: QRHouseholder | QRGramSchmidt | QRModifiedGramSchmidt):
self.Q, self.R = qr.Q, qr.R
def solve(self, b: Vector) -> Vector:
Qtb = Vector(
[
sum(self.Q.data[i][j] * b[i] for i in range(self.Q.m))
for j in range(self.Q.n)
]
)
return backward_substitution(self.R, Qtb)
class LeastSquaresSolver:
"""Solve overdetermined system Ax ≈ b in least squares sense using QR."""
def __init__(self, A: Matrix, b: Vector):
self.A, self.b = A, b
def solve(self) -> Vector:
qr = QRHouseholder(self.A)
Q, R = qr.Q, qr.R
# Compute Q^T b (dimension m)
Qtb_full = [
sum(Q.data[i][j] * self.b[i] for i in range(Q.m)) for j in range(Q.n)
]
# Take only first n entries
Qtb = Vector(Qtb_full[: self.A.n])
# Extract leading n×n block of R
Rtop = Matrix([R.data[i][: self.A.n] for i in range(self.A.n)])
return backward_substitution(Rtop, Qtb)