Merge pull request 'broken links corrected' (#5) from ougur/numethods:main into main
Reviewed-on: #5
This commit is contained in:
@@ -4,7 +4,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
|
||||
## Core Tutorials
|
||||
|
||||
1. [Tutorial 1: Vectors and Matrices](tutorial1_vectors.ipynb)
|
||||
1. [Tutorial 1: Vectors and Matrices](./tutorial1_vectors_matrices.ipynb)
|
||||
|
||||
- Definitions of vectors and matrices.
|
||||
- Vector operations: addition, scalar multiplication, dot product, norms.
|
||||
@@ -12,7 +12,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- Matrix and vector norms.
|
||||
- Examples with `numethods.linalg`.
|
||||
|
||||
2. [Tutorial 2: Linear Systems of Equations](tutorial2_linear_systems.ipynb)
|
||||
2. [Tutorial 2: Linear Systems of Equations](./tutorial2_linear_systems.ipynb)
|
||||
|
||||
- Gaussian elimination and Gauss–Jordan.
|
||||
- LU decomposition.
|
||||
@@ -20,7 +20,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- Iterative methods: Jacobi and Gauss-Seidel.
|
||||
- Examples with `numethods.solvers`.
|
||||
|
||||
3. [Tutorial 3: Orthogonalization and QR Factorization](tutorial3_orthogonalization.ipynb)
|
||||
3. [Tutorial 3: Orthogonalization and QR Factorization](./tutorial3_orthogonalization.ipynb)
|
||||
|
||||
- Inner products and orthogonality.
|
||||
- Gram–Schmidt process (classical and modified).
|
||||
@@ -28,7 +28,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- QR decomposition and applications.
|
||||
- Examples with `numethods.orthogonal`.
|
||||
|
||||
4. [Tutorial 4: Root-Finding Methods](tutorial4_root_finding.ipynb)
|
||||
4. [Tutorial 4: Root-Finding Methods](./tutorial4_root_finding.ipynb)
|
||||
|
||||
- Bisection method.
|
||||
- Fixed-point iteration.
|
||||
|
@@ -94,7 +94,7 @@
|
||||
"q_1 = \\frac{a_1}{\\|a_1\\|}\n",
|
||||
"$$\n",
|
||||
"$$\n",
|
||||
"q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}\n",
|
||||
"q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}, \\qquad k = 2, \\ldots, n\n",
|
||||
"$$\n",
|
||||
"\n",
|
||||
"Matrix form:\n",
|
||||
@@ -236,17 +236,17 @@
|
||||
"\n",
|
||||
"We want to solve\n",
|
||||
"\n",
|
||||
"$$ \\min_x \\|Ax - b\\|_2. $$\n",
|
||||
"$$ \\min_x \\Vert Ax - b \\Vert_2^2. $$\n",
|
||||
"\n",
|
||||
"If $A = QR$, then\n",
|
||||
"\n",
|
||||
"$$ \\min_x \\|Ax - b\\|_2 = \\min_x \\|QRx - b\\|_2. $$\n",
|
||||
"$$ \\min_x \\Vert Ax - b \\Vert_2^2 = \\min_x \\Vert QRx - b \\Vert_2^2. $$\n",
|
||||
"\n",
|
||||
"Since $Q$ has orthonormal columns:\n",
|
||||
"Since $Q$ has orthonormal columns, and the normal equations boils down to\n",
|
||||
"\n",
|
||||
"$$ R x = Q^T b. $$\n",
|
||||
"$$ R x = Q^T b, $$\n",
|
||||
"\n",
|
||||
"So we can solve using back-substitution.\n"
|
||||
"we can therefore solve for $x$ by using back-substitution.\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -55,7 +55,7 @@
|
||||
"source": [
|
||||
"## 2. Bisection Method\n",
|
||||
"\n",
|
||||
"**Assumption (Intermediate Value Theorem):** If f is continuous on ([a,b]) and (f(a),f(b) < 0),\n",
|
||||
"**Assumption (Intermediate Value Theorem):** If f is continuous on $[a,b]$ and $f(a)f(b) < 0$,\n",
|
||||
"then there exists $x^\\star$ in (a,b) with $f(x^\\star)=0$.\n",
|
||||
"\n",
|
||||
"- Assumes $f$ is continuous on $[a,b]$ with $f(a)f(b)<0$.\n",
|
||||
|
Reference in New Issue
Block a user