main: some modification and typos #4
35
.gitignore
vendored
35
.gitignore
vendored
@@ -1,38 +1,3 @@
|
||||
Logo
|
||||
Issues
|
||||
Pull Requests
|
||||
Milestones
|
||||
Explore
|
||||
PhiloMath
|
||||
/
|
||||
data-fitting-models
|
||||
Private
|
||||
generated from PhiloMath/default-project-template
|
||||
Code
|
||||
Issues
|
||||
Pull Requests
|
||||
Actions
|
||||
Packages
|
||||
Projects
|
||||
Releases
|
||||
Wiki
|
||||
Activity
|
||||
Settings
|
||||
Files
|
||||
.gitignore
|
||||
LICENSE
|
||||
README.md
|
||||
data-fitting-models
|
||||
/
|
||||
.gitignore
|
||||
|
||||
Ömür Uğur
|
||||
f9860d7f48
|
||||
Initial commit
|
||||
2 days ago
|
||||
357 lines
|
||||
6.4 KiB
|
||||
Plaintext
|
||||
# ---> JupyterNotebooks
|
||||
# gitignore template for Jupyter Notebooks
|
||||
# website: http://jupyter.org/
|
||||
|
48
README.md
48
README.md
@@ -10,55 +10,9 @@ A lightweight, from-scratch, object-oriented Python package implementing classic
|
||||
- Lightweight, no dependencies.
|
||||
- Consistent object-oriented API (.solve() etc).
|
||||
|
||||
---
|
||||
|
||||
## Tutorial Series
|
||||
|
||||
This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code.
|
||||
|
||||
### Core Tutorials
|
||||
|
||||
1. [Tutorial 1: Vectors and Matrices](tutorials/tutorial1_vectors.ipynb)
|
||||
|
||||
- Definitions of vectors and matrices.
|
||||
- Vector operations: addition, scalar multiplication, dot product, norms.
|
||||
- Matrix operations: addition, multiplication, transpose, inverse.
|
||||
- Matrix and vector norms.
|
||||
- Examples with `numethods.linalg`.
|
||||
|
||||
2. [Tutorial 2: Linear Systems of Equations](tutorials/tutorial2_linear_systems.ipynb)
|
||||
|
||||
- Gaussian elimination and Gauss–Jordan.
|
||||
- LU decomposition.
|
||||
- Cholesky decomposition.
|
||||
- Iterative methods: Jacobi and Gauss-Seidel.
|
||||
- Examples with `numethods.solvers`.
|
||||
|
||||
3. [Tutorial 3: Orthogonalization and QR Factorization](tutorials/tutorial3_orthogonalization.ipynb)
|
||||
|
||||
- Inner products and orthogonality.
|
||||
- Gram–Schmidt process (classical and modified).
|
||||
- Householder reflections.
|
||||
- QR decomposition and applications.
|
||||
- Examples with `numethods.orthogonal`.
|
||||
|
||||
4. [Tutorial 4: Root-Finding Methods](tutorials/tutorial4_root_finding.ipynb)
|
||||
|
||||
- Bisection method.
|
||||
- Fixed-point iteration.
|
||||
- Newton’s method.
|
||||
- Secant method.
|
||||
- Convergence analysis and error behavior.
|
||||
- Trace outputs for iteration history.
|
||||
- Examples with `numethods.roots`.
|
||||
|
||||
- [Polynomial Regression Demo](tutorials/polynomial_regression.ipynb)
|
||||
|
||||
- Step-by-step example of polynomial regression.
|
||||
- Shows how to fit polynomials of different degrees to data.
|
||||
- Visualizes fitted curves against the original data.
|
||||
|
||||
---
|
||||
This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code. See [Tutorials](./tutorials/README.md).
|
||||
|
||||
## Features
|
||||
|
||||
|
47
tutorials/README.md
Normal file
47
tutorials/README.md
Normal file
@@ -0,0 +1,47 @@
|
||||
# Tutorial Series
|
||||
|
||||
This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code.
|
||||
|
||||
## Core Tutorials
|
||||
|
||||
1. [Tutorial 1: Vectors and Matrices](./tutorial1_vectors.ipynb)
|
||||
|
||||
- Definitions of vectors and matrices.
|
||||
- Vector operations: addition, scalar multiplication, dot product, norms.
|
||||
- Matrix operations: addition, multiplication, transpose, inverse.
|
||||
- Matrix and vector norms.
|
||||
- Examples with `numethods.linalg`.
|
||||
|
||||
2. [Tutorial 2: Linear Systems of Equations](./tutorial2_linear_systems.ipynb)
|
||||
|
||||
- Gaussian elimination and Gauss–Jordan.
|
||||
- LU decomposition.
|
||||
- Cholesky decomposition.
|
||||
- Iterative methods: Jacobi and Gauss-Seidel.
|
||||
- Examples with `numethods.solvers`.
|
||||
|
||||
3. [Tutorial 3: Orthogonalization and QR Factorization](./tutorial3_orthogonalization.ipynb)
|
||||
|
||||
- Inner products and orthogonality.
|
||||
- Gram–Schmidt process (classical and modified).
|
||||
- Householder reflections.
|
||||
- QR decomposition and applications.
|
||||
- Examples with `numethods.orthogonal`.
|
||||
|
||||
4. [Tutorial 4: Root-Finding Methods](./tutorial4_root_finding.ipynb)
|
||||
|
||||
- Bisection method.
|
||||
- Fixed-point iteration.
|
||||
- Newton’s method.
|
||||
- Secant method.
|
||||
- Convergence analysis and error behavior.
|
||||
- Trace outputs for iteration history.
|
||||
- Examples with `numethods.roots`.
|
||||
|
||||
- [Polynomial Regression Demo](./polynomial_regression.ipynb)
|
||||
|
||||
- Step-by-step example of polynomial regression.
|
||||
- Shows how to fit polynomials of different degrees to data.
|
||||
- Visualizes fitted curves against the original data.
|
||||
|
||||
---
|
@@ -142,7 +142,7 @@
|
||||
"## 5. Basic operations\n",
|
||||
"\n",
|
||||
"### 5.1 Vector addition and subtraction\n",
|
||||
"For $ u, v \\in \\mathbb{R}^n $:\n",
|
||||
"For $u, v \\in \\mathbb{R}^n$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"u + v = \\begin{bmatrix} u_1 + v_1 \\\\ u_2 + v_2 \\\\ \\vdots \\\\ u_n + v_n \\end{bmatrix},\n",
|
||||
@@ -180,7 +180,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 5.2 Scalar multiplication\n",
|
||||
"For $ \\alpha \\in \\mathbb{R}, v \\in \\mathbb{R}^n $:\n",
|
||||
"For $\\alpha \\in \\mathbb{R}, v \\in \\mathbb{R}^n$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"\\alpha v = \\begin{bmatrix} \\alpha v_1 \\\\ \\alpha v_2 \\\\ \\vdots \\\\ \\alpha v_n \\end{bmatrix}.\n",
|
||||
@@ -215,7 +215,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 5.3 Matrix addition and subtraction\n",
|
||||
"For $ A, B \\in \\mathbb{R}^{m \\times n} $:\n",
|
||||
"For $A, B \\in \\mathbb{R}^{m \\times n}$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"A + B = [ a_{ij} + b_{ij} ], \\quad\n",
|
||||
@@ -254,7 +254,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 5.4 Matrix-Vector multiplication\n",
|
||||
"For $ A \\in \\mathbb{R}^{m \\times n}, v \\in \\mathbb{R}^n $:\n",
|
||||
"For $A \\in \\mathbb{R}^{m \\times n}, v \\in \\mathbb{R}^n$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"(Av)_i = \\sum_{j=1}^n a_{ij} v_j.\n",
|
||||
@@ -290,7 +290,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 5.5 Matrix-Matrix multiplication\n",
|
||||
"For $ A \\in \\mathbb{R}^{m \\times n}, B \\in \\mathbb{R}^{n \\times p} $:\n",
|
||||
"For $A \\in \\mathbb{R}^{m \\times n}, B \\in \\mathbb{R}^{n \\times p}$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"(AB)_{ij} = \\sum_{k=1}^n a_{ik} b_{kj}.\n",
|
||||
@@ -327,7 +327,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 5.6 Transpose\n",
|
||||
"For $ A \\in \\mathbb{R}^{m \\times n} $:\n",
|
||||
"For $A \\in \\mathbb{R}^{m \\times n}$:\n",
|
||||
"\n",
|
||||
"$$\n",
|
||||
"A^T_{ij} = A_{ji}.\n",
|
||||
|
Reference in New Issue
Block a user