forked from denizdonmez/numethods
new methods; eigenvalue. condition number implemetation
eigenvalue module, readme and demo update. condition number implemented in linalg.py
This commit is contained in:
16
README.md
16
README.md
@@ -43,6 +43,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- Examples with `numethods.orthogonal`.
|
||||
|
||||
4. [Tutorial 4: Root-Finding Methods](tutorials/tutorial4_root_finding.ipynb)
|
||||
|
||||
- Bisection method.
|
||||
- Fixed-point iteration.
|
||||
- Newton’s method.
|
||||
@@ -52,10 +53,10 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- Examples with `numethods.roots`.
|
||||
|
||||
- [Polynomial Regression Demo](tutorials/polynomial_regression.ipynb)
|
||||
- Step-by-step example of polynomial regression.
|
||||
- Shows how to fit polynomials of different degrees to data.
|
||||
- Visualizes fitted curves against the original data.
|
||||
- Uses `PolyFit` from `numethods.fitting`.
|
||||
|
||||
- Step-by-step example of polynomial regression.
|
||||
- Shows how to fit polynomials of different degrees to data.
|
||||
- Visualizes fitted curves against the original data.
|
||||
|
||||
---
|
||||
|
||||
@@ -98,6 +99,13 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
||||
- **Second derivative**: `SecondDerivative`
|
||||
- **Richardson extrapolation**: `RichardsonExtrap`
|
||||
|
||||
### Eigenvalue methods
|
||||
|
||||
- **Power Iteration** (dominant eigenvalue/vector): `PowerIteration`
|
||||
- **Inverse Power Iteration** (optionally shifted): `InversePowerIteration`
|
||||
- **Rayleigh Quotient Iteration**: `RayleighQuotientIteration`
|
||||
- **QR eigenvalue iteration** (unshifted, educational): `QREigenvalues`
|
||||
|
||||
### Matrix & Vector utilities
|
||||
|
||||
- Minimal `Matrix` / `Vector` classes
|
||||
|
Reference in New Issue
Block a user