forked from denizdonmez/numethods
new methods; eigenvalue. condition number implemetation
eigenvalue module, readme and demo update. condition number implemented in linalg.py
This commit is contained in:
16
README.md
16
README.md
@@ -43,6 +43,7 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
|||||||
- Examples with `numethods.orthogonal`.
|
- Examples with `numethods.orthogonal`.
|
||||||
|
|
||||||
4. [Tutorial 4: Root-Finding Methods](tutorials/tutorial4_root_finding.ipynb)
|
4. [Tutorial 4: Root-Finding Methods](tutorials/tutorial4_root_finding.ipynb)
|
||||||
|
|
||||||
- Bisection method.
|
- Bisection method.
|
||||||
- Fixed-point iteration.
|
- Fixed-point iteration.
|
||||||
- Newton’s method.
|
- Newton’s method.
|
||||||
@@ -52,10 +53,10 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
|||||||
- Examples with `numethods.roots`.
|
- Examples with `numethods.roots`.
|
||||||
|
|
||||||
- [Polynomial Regression Demo](tutorials/polynomial_regression.ipynb)
|
- [Polynomial Regression Demo](tutorials/polynomial_regression.ipynb)
|
||||||
- Step-by-step example of polynomial regression.
|
|
||||||
- Shows how to fit polynomials of different degrees to data.
|
- Step-by-step example of polynomial regression.
|
||||||
- Visualizes fitted curves against the original data.
|
- Shows how to fit polynomials of different degrees to data.
|
||||||
- Uses `PolyFit` from `numethods.fitting`.
|
- Visualizes fitted curves against the original data.
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@@ -98,6 +99,13 @@ This package comes with a set of Jupyter notebooks designed as a structured tuto
|
|||||||
- **Second derivative**: `SecondDerivative`
|
- **Second derivative**: `SecondDerivative`
|
||||||
- **Richardson extrapolation**: `RichardsonExtrap`
|
- **Richardson extrapolation**: `RichardsonExtrap`
|
||||||
|
|
||||||
|
### Eigenvalue methods
|
||||||
|
|
||||||
|
- **Power Iteration** (dominant eigenvalue/vector): `PowerIteration`
|
||||||
|
- **Inverse Power Iteration** (optionally shifted): `InversePowerIteration`
|
||||||
|
- **Rayleigh Quotient Iteration**: `RayleighQuotientIteration`
|
||||||
|
- **QR eigenvalue iteration** (unshifted, educational): `QREigenvalues`
|
||||||
|
|
||||||
### Matrix & Vector utilities
|
### Matrix & Vector utilities
|
||||||
|
|
||||||
- Minimal `Matrix` / `Vector` classes
|
- Minimal `Matrix` / `Vector` classes
|
||||||
|
@@ -1,6 +1,6 @@
|
|||||||
import sys
|
import sys
|
||||||
|
|
||||||
sys.path.append("../")
|
# sys.path.append("../")
|
||||||
from numethods import *
|
from numethods import *
|
||||||
|
|
||||||
|
|
||||||
@@ -41,6 +41,9 @@ def demo_qr():
|
|||||||
|
|
||||||
|
|
||||||
def demo_roots():
|
def demo_roots():
|
||||||
|
f = lambda x: x**2 - 2
|
||||||
|
df = lambda x: 2 * x
|
||||||
|
|
||||||
# Newton
|
# Newton
|
||||||
steps = NewtonRoot(f, df, x0=1.0).trace()
|
steps = NewtonRoot(f, df, x0=1.0).trace()
|
||||||
print("Newton Method Trace (x^2 - 2):")
|
print("Newton Method Trace (x^2 - 2):")
|
||||||
@@ -85,9 +88,37 @@ def demo_differentiation():
|
|||||||
print("Second derivative:", SecondDerivative(f, x0))
|
print("Second derivative:", SecondDerivative(f, x0))
|
||||||
|
|
||||||
|
|
||||||
|
def demo_eigen():
|
||||||
|
# Not sure about eigenvalue methods but let's include some demos
|
||||||
|
|
||||||
|
A = Matrix([[4, 1, 1], [1, 3, 0], [1, 0, 2]])
|
||||||
|
print("\n=== Power Iteration ===")
|
||||||
|
solver_pi = PowerIteration(A, tol=1e-12, max_iter=100)
|
||||||
|
lam, x = solver_pi.solve()
|
||||||
|
solver_pi.trace()
|
||||||
|
print(f"Dominant eigenvalue ≈ {lam:.6f}, eigenvector ≈ {x}\n")
|
||||||
|
|
||||||
|
print("\n=== Inverse Power Iteration (shift=0) ===")
|
||||||
|
solver_ip = InversePowerIteration(A, shift=0.0, tol=1e-12, max_iter=100)
|
||||||
|
mu, x = solver_ip.solve()
|
||||||
|
solver_ip.trace()
|
||||||
|
print(f"Smallest eigenvalue ≈ {mu:.6f}, eigenvector ≈ {x}\n")
|
||||||
|
|
||||||
|
print("\n=== Rayleigh Quotient Iteration ===")
|
||||||
|
solver_rqi = RayleighQuotientIteration(A, tol=1e-12, max_iter=20)
|
||||||
|
mu, x = solver_rqi.solve()
|
||||||
|
solver_rqi.trace()
|
||||||
|
print(f"Eigenvalue ≈ {mu:.6f}, eigenvector ≈ {x}\n")
|
||||||
|
|
||||||
|
M = Matrix([[3, 1, 1], [-1, 3, 1], [1, 1, 3], [0, 2, 1]])
|
||||||
|
U, S, V = SVD(M).solve()
|
||||||
|
print("Singular values:", S)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
demo_linear_solvers()
|
demo_linear_solvers()
|
||||||
demo_roots()
|
demo_roots()
|
||||||
demo_interpolation()
|
demo_interpolation()
|
||||||
demo_qr()
|
demo_qr()
|
||||||
demo_differentiation()
|
demo_differentiation()
|
||||||
|
demo_eigen()
|
||||||
|
@@ -14,6 +14,13 @@ from .differentiation import (
|
|||||||
SecondDerivative,
|
SecondDerivative,
|
||||||
RichardsonExtrap,
|
RichardsonExtrap,
|
||||||
)
|
)
|
||||||
|
from .eigen import (
|
||||||
|
PowerIteration,
|
||||||
|
InversePowerIteration,
|
||||||
|
RayleighQuotientIteration,
|
||||||
|
QREigenvalues,
|
||||||
|
SVD,
|
||||||
|
)
|
||||||
from .solvers import LUDecomposition, GaussJordan, Jacobi, GaussSeidel, Cholesky
|
from .solvers import LUDecomposition, GaussJordan, Jacobi, GaussSeidel, Cholesky
|
||||||
from .roots import Bisection, FixedPoint, Secant, NewtonRoot, print_trace
|
from .roots import Bisection, FixedPoint, Secant, NewtonRoot, print_trace
|
||||||
from .interpolation import NewtonInterpolation, LagrangeInterpolation
|
from .interpolation import NewtonInterpolation, LagrangeInterpolation
|
||||||
|
219
numethods/eigen.py
Normal file
219
numethods/eigen.py
Normal file
@@ -0,0 +1,219 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
from .linalg import Matrix, Vector
|
||||||
|
from .orthogonal import QRHouseholder
|
||||||
|
from .solvers import LUDecomposition
|
||||||
|
from .exceptions import NonSquareMatrixError, ConvergenceError
|
||||||
|
from .linalg import Matrix, Vector
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def solve_linear(M: Matrix, b: Vector) -> Vector:
|
||||||
|
"""Solve Mx = b using LU decomposition."""
|
||||||
|
solver = LUDecomposition(M)
|
||||||
|
return solver.solve(b)
|
||||||
|
|
||||||
|
|
||||||
|
class PowerIteration:
|
||||||
|
def __init__(self, A: Matrix, tol: float = 1e-10, max_iter: int = 5000):
|
||||||
|
if not A.is_square():
|
||||||
|
raise NonSquareMatrixError("A must be square")
|
||||||
|
self.A, self.tol, self.max_iter = A, tol, max_iter
|
||||||
|
self.history = []
|
||||||
|
|
||||||
|
def solve(self, x0: Vector | None = None) -> tuple[float, Vector]:
|
||||||
|
n = self.A.n
|
||||||
|
x = Vector([1.0] * n) if x0 is None else x0.copy()
|
||||||
|
lam_old = 0.0
|
||||||
|
self.history.clear()
|
||||||
|
|
||||||
|
for k in range(self.max_iter):
|
||||||
|
y = self.A @ x
|
||||||
|
nrm = y.norm2()
|
||||||
|
if nrm == 0.0:
|
||||||
|
raise ConvergenceError("Zero vector encountered")
|
||||||
|
x = (1.0 / nrm) * y
|
||||||
|
lam = (x.dot(self.A @ x)) / (x.dot(x))
|
||||||
|
err = abs(lam - lam_old)
|
||||||
|
|
||||||
|
self.history.append({"iter": k, "lambda": lam, "error": err})
|
||||||
|
|
||||||
|
if err <= self.tol * (1.0 + abs(lam)):
|
||||||
|
return lam, x
|
||||||
|
lam_old = lam
|
||||||
|
|
||||||
|
raise ConvergenceError("Power iteration did not converge")
|
||||||
|
|
||||||
|
def trace(self):
|
||||||
|
if not self.history:
|
||||||
|
print("No iterations stored. Run .solve() first.")
|
||||||
|
return
|
||||||
|
print("Power Iteration Trace")
|
||||||
|
print(f"{'iter':>6} | {'lambda':>12} | {'error':>12}")
|
||||||
|
print("-" * 40)
|
||||||
|
for row in self.history:
|
||||||
|
print(f"{row['iter']:6d} | {row['lambda']:12.6e} | {row['error']:12.6e}")
|
||||||
|
|
||||||
|
|
||||||
|
class InversePowerIteration:
|
||||||
|
def __init__(
|
||||||
|
self, A: Matrix, shift: float = 0.0, tol: float = 1e-10, max_iter: int = 5000
|
||||||
|
):
|
||||||
|
if not A.is_square():
|
||||||
|
raise NonSquareMatrixError("A must be square")
|
||||||
|
self.A, self.shift, self.tol, self.max_iter = A, shift, tol, max_iter
|
||||||
|
self.history = []
|
||||||
|
|
||||||
|
def solve(self, x0: Vector | None = None) -> tuple[float, Vector]:
|
||||||
|
n = self.A.n
|
||||||
|
x = Vector([1.0] * n) if x0 is None else x0.copy()
|
||||||
|
mu_old = None
|
||||||
|
self.history.clear()
|
||||||
|
|
||||||
|
for k in range(self.max_iter):
|
||||||
|
M = Matrix(
|
||||||
|
[
|
||||||
|
[
|
||||||
|
self.A.data[i][j] - (self.shift if i == j else 0.0)
|
||||||
|
for j in range(n)
|
||||||
|
]
|
||||||
|
for i in range(n)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
y = solve_linear(M, x)
|
||||||
|
nrm = y.norm2()
|
||||||
|
if nrm == 0.0:
|
||||||
|
raise ConvergenceError("Zero vector")
|
||||||
|
x = (1.0 / nrm) * y
|
||||||
|
mu = (x.dot(self.A @ x)) / (x.dot(x))
|
||||||
|
err = abs(mu - mu_old) if mu_old is not None else float("inf")
|
||||||
|
|
||||||
|
self.history.append({"iter": k, "mu": mu, "error": err})
|
||||||
|
|
||||||
|
if (mu_old is not None) and err <= self.tol * (1.0 + abs(mu)):
|
||||||
|
return mu, x
|
||||||
|
mu_old = mu
|
||||||
|
|
||||||
|
raise ConvergenceError("Inverse/shifted power iteration did not converge")
|
||||||
|
|
||||||
|
def trace(self):
|
||||||
|
if not self.history:
|
||||||
|
print("No iterations stored. Run .solve() first.")
|
||||||
|
return
|
||||||
|
print("Inverse/Shifted Power Iteration Trace")
|
||||||
|
print(f"{'iter':>6} | {'mu':>12} | {'error':>12}")
|
||||||
|
print("-" * 40)
|
||||||
|
for row in self.history:
|
||||||
|
print(f"{row['iter']:6d} | {row['mu']:12.6e} | {row['error']:12.6e}")
|
||||||
|
|
||||||
|
|
||||||
|
class RayleighQuotientIteration:
|
||||||
|
def __init__(self, A: Matrix, tol: float = 1e-12, max_iter: int = 1000):
|
||||||
|
if not A.is_square():
|
||||||
|
raise NonSquareMatrixError("A must be square")
|
||||||
|
self.A, self.tol, self.max_iter = A, tol, max_iter
|
||||||
|
self.history = []
|
||||||
|
|
||||||
|
def solve(self, x0: Vector | None = None) -> tuple[float, Vector]:
|
||||||
|
n = self.A.n
|
||||||
|
x = Vector([1.0] * n) if x0 is None else x0.copy()
|
||||||
|
x = (1.0 / x.norm2()) * x
|
||||||
|
mu = (x.dot(self.A @ x)) / (x.dot(x))
|
||||||
|
self.history.clear()
|
||||||
|
|
||||||
|
for k in range(self.max_iter):
|
||||||
|
M = Matrix(
|
||||||
|
[
|
||||||
|
[self.A.data[i][j] - (mu if i == j else 0.0) for j in range(n)]
|
||||||
|
for i in range(n)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
y = solve_linear(M, x)
|
||||||
|
x = (1.0 / y.norm2()) * y
|
||||||
|
mu_new = (x.dot(self.A @ x)) / (x.dot(x))
|
||||||
|
err = abs(mu_new - mu)
|
||||||
|
|
||||||
|
self.history.append({"iter": k, "mu": mu_new, "error": err})
|
||||||
|
|
||||||
|
if err <= self.tol * (1.0 + abs(mu_new)):
|
||||||
|
return mu_new, x
|
||||||
|
mu = mu_new
|
||||||
|
|
||||||
|
raise ConvergenceError("Rayleigh quotient iteration did not converge")
|
||||||
|
|
||||||
|
def trace(self):
|
||||||
|
if not self.history:
|
||||||
|
print("No iterations stored. Run .solve() first.")
|
||||||
|
return
|
||||||
|
print("Rayleigh Quotient Iteration Trace")
|
||||||
|
print(f"{'iter':>6} | {'mu':>12} | {'error':>12}")
|
||||||
|
print("-" * 40)
|
||||||
|
for row in self.history:
|
||||||
|
print(f"{row['iter']:6d} | {row['mu']:12.6e} | {row['error']:12.6e}")
|
||||||
|
|
||||||
|
|
||||||
|
class QREigenvalues:
|
||||||
|
def __init__(self, A: Matrix, tol: float = 1e-10, max_iter: int = 10000):
|
||||||
|
if not A.is_square():
|
||||||
|
raise NonSquareMatrixError("A must be square")
|
||||||
|
self.A0, self.tol, self.max_iter = A.copy(), tol, max_iter
|
||||||
|
|
||||||
|
def solve(self) -> Matrix:
|
||||||
|
A = self.A0.copy()
|
||||||
|
n = A.n
|
||||||
|
for _ in range(self.max_iter):
|
||||||
|
qr = QRHouseholder(A)
|
||||||
|
Q, R = qr.Q, qr.R
|
||||||
|
A = R @ Q
|
||||||
|
off = 0.0
|
||||||
|
for i in range(1, n):
|
||||||
|
off += sum(abs(A.data[i][j]) for j in range(0, i))
|
||||||
|
if off <= self.tol:
|
||||||
|
return A
|
||||||
|
raise ConvergenceError("QR did not converge")
|
||||||
|
|
||||||
|
|
||||||
|
class SVD:
|
||||||
|
def __init__(self, A: Matrix, tol: float = 1e-10, max_iter: int = 10000):
|
||||||
|
self.A, A = A, A
|
||||||
|
self.tol, self.max_iter = tol, max_iter
|
||||||
|
|
||||||
|
def _eig_sym(self, S: Matrix):
|
||||||
|
n = S.n
|
||||||
|
V = Matrix.identity(n)
|
||||||
|
A = S.copy()
|
||||||
|
for _ in range(self.max_iter):
|
||||||
|
qr = QRHouseholder(A)
|
||||||
|
Q, R = qr.Q, qr.R
|
||||||
|
A = R @ Q
|
||||||
|
V = V @ Q
|
||||||
|
off = 0.0
|
||||||
|
for i in range(1, n):
|
||||||
|
off += sum(abs(A.data[i][j]) for j in range(0, i))
|
||||||
|
if off <= self.tol:
|
||||||
|
break
|
||||||
|
return [A.data[i][i] for i in range(n)], V
|
||||||
|
|
||||||
|
def solve(self) -> tuple[Matrix, Vector, Matrix]:
|
||||||
|
At = self.A.transpose()
|
||||||
|
S = At @ self.A
|
||||||
|
eigvals, V = self._eig_sym(S)
|
||||||
|
idx = sorted(range(len(eigvals)), key=lambda i: eigvals[i], reverse=True)
|
||||||
|
eigvals = [eigvals[i] for i in idx]
|
||||||
|
V = Matrix([[V.data[r][i] for i in idx] for r in range(V.m)])
|
||||||
|
sing = [math.sqrt(ev) if ev > 0 else 0.0 for ev in eigvals]
|
||||||
|
Ucols = []
|
||||||
|
for j, sv in enumerate(sing):
|
||||||
|
vj = V.col(j)
|
||||||
|
Av = self.A @ vj
|
||||||
|
if sv > 1e-14:
|
||||||
|
uj = (1.0 / sv) * Av
|
||||||
|
else:
|
||||||
|
nrm = Av.norm2()
|
||||||
|
uj = (1.0 / nrm) * Av if nrm > 0 else Vector([0.0] * self.A.m)
|
||||||
|
nrm = uj.norm2()
|
||||||
|
uj = (1.0 / nrm) * uj if nrm > 0 else uj
|
||||||
|
Ucols.append(uj.data)
|
||||||
|
U = Matrix([[Ucols[j][i] for j in range(len(Ucols))] for i in range(self.A.m)])
|
||||||
|
|
||||||
|
Sigma = Vector(sing)
|
||||||
|
return U, Sigma, V
|
@@ -1,6 +1,7 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from typing import Iterable, Tuple, List, Union
|
from typing import Iterable, Tuple, List, Union
|
||||||
from .exceptions import NonSquareMatrixError, SingularMatrixError
|
from .exceptions import NonSquareMatrixError, SingularMatrixError
|
||||||
|
import math
|
||||||
|
|
||||||
Number = float # We'll use float throughout
|
Number = float # We'll use float throughout
|
||||||
|
|
||||||
@@ -97,19 +98,26 @@ class Matrix:
|
|||||||
def col(self, j: int) -> Vector:
|
def col(self, j: int) -> Vector:
|
||||||
return Vector(self.data[i][j] for i in range(self.m))
|
return Vector(self.data[i][j] for i in range(self.m))
|
||||||
|
|
||||||
def norm(self) -> Number:
|
def norm(self) -> float:
|
||||||
return (
|
"""Matrix 1-norm: max column sum."""
|
||||||
max(sum(abs(self.data[i][j]) for i in range(self.m)) for j in range(self.n))
|
return max(
|
||||||
if self.n > 0
|
sum(abs(self.data[i][j]) for i in range(self.m)) for j in range(self.n)
|
||||||
else 0.0
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def norm_inf(self) -> Number:
|
def norm_inf(self) -> float:
|
||||||
return (
|
"""Matrix infinity norm: max row sum."""
|
||||||
max(sum(abs(self.data[i][j]) for j in range(self.n)) for i in range(self.m))
|
return max(sum(abs(v) for v in row) for row in self.data)
|
||||||
if self.m > 0
|
|
||||||
else 0.0
|
def norm2(self, tol: float = 1e-10, max_iter: int = 5000) -> float:
|
||||||
)
|
"""Spectral norm via power iteration on A^T A."""
|
||||||
|
# lazy import, avoids circular import
|
||||||
|
from .eigen import PowerIteration
|
||||||
|
|
||||||
|
if not self.is_square():
|
||||||
|
raise NonSquareMatrixError("Spectral norm requires square matrix")
|
||||||
|
AtA = self.T @ self
|
||||||
|
lam, _ = PowerIteration(AtA, tol=tol, max_iter=max_iter).solve()
|
||||||
|
return math.sqrt(lam)
|
||||||
|
|
||||||
def norm_fro(self) -> Number:
|
def norm_fro(self) -> Number:
|
||||||
return (
|
return (
|
||||||
@@ -117,6 +125,44 @@ class Matrix:
|
|||||||
** 0.5
|
** 0.5
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def inverse(self) -> "Matrix":
|
||||||
|
# lazy import, avoids circular import
|
||||||
|
from .solvers import LUDecomposition
|
||||||
|
|
||||||
|
"""Compute A^{-1} using LU decomposition."""
|
||||||
|
if not self.is_square():
|
||||||
|
raise NonSquareMatrixError("Inverse requires square matrix")
|
||||||
|
n = self.n
|
||||||
|
solver = LUDecomposition(self)
|
||||||
|
cols = []
|
||||||
|
for j in range(n):
|
||||||
|
e = Vector([1.0 if i == j else 0.0 for i in range(n)])
|
||||||
|
x = solver.solve(e)
|
||||||
|
cols.append([x[i] for i in range(n)])
|
||||||
|
return Matrix([[cols[j][i] for j in range(n)] for i in range(n)])
|
||||||
|
|
||||||
|
def condition_number(self, norm: str = "2") -> float:
|
||||||
|
"""
|
||||||
|
Compute condition number κ(A) = ||A|| * ||A^{-1}||.
|
||||||
|
norm: "1", "inf", or "2"
|
||||||
|
"""
|
||||||
|
if not self.is_square():
|
||||||
|
raise NonSquareMatrixError("Condition number requires square matrix")
|
||||||
|
|
||||||
|
if norm == "1":
|
||||||
|
normA = self.norm()
|
||||||
|
normAinv = self.inverse().norm()
|
||||||
|
elif norm == "inf":
|
||||||
|
normA = self.norm_inf()
|
||||||
|
normAinv = self.inverse().norm_inf()
|
||||||
|
elif norm == "2":
|
||||||
|
normA = self.norm2()
|
||||||
|
normAinv = self.inverse().norm2()
|
||||||
|
else:
|
||||||
|
raise ValueError("norm must be '1', 'inf', or '2'")
|
||||||
|
|
||||||
|
return normA * normAinv
|
||||||
|
|
||||||
def __add__(self, other: "Matrix") -> "Matrix":
|
def __add__(self, other: "Matrix") -> "Matrix":
|
||||||
if not isinstance(other, Matrix):
|
if not isinstance(other, Matrix):
|
||||||
raise TypeError("Can only add Matrix with Matrix")
|
raise TypeError("Can only add Matrix with Matrix")
|
||||||
|
Reference in New Issue
Block a user