Merge pull request 'main: some modification and typos' (#4) from ougur/numethods:main into main

Reviewed-on: denizdonmez/numethods#4
This commit is contained in:
2025-09-17 13:07:02 +03:00
4 changed files with 54 additions and 88 deletions

35
.gitignore vendored
View File

@@ -1,38 +1,3 @@
Logo
Issues
Pull Requests
Milestones
Explore
PhiloMath
/
data-fitting-models
Private
generated from PhiloMath/default-project-template
Code
Issues
Pull Requests
Actions
Packages
Projects
Releases
Wiki
Activity
Settings
Files
.gitignore
LICENSE
README.md
data-fitting-models
/
.gitignore
Ömür Uğur
f9860d7f48
Initial commit
2 days ago
357 lines
6.4 KiB
Plaintext
# ---> JupyterNotebooks # ---> JupyterNotebooks
# gitignore template for Jupyter Notebooks # gitignore template for Jupyter Notebooks
# website: http://jupyter.org/ # website: http://jupyter.org/

View File

@@ -10,55 +10,9 @@ A lightweight, from-scratch, object-oriented Python package implementing classic
- Lightweight, no dependencies. - Lightweight, no dependencies.
- Consistent object-oriented API (.solve() etc). - Consistent object-oriented API (.solve() etc).
---
## Tutorial Series ## Tutorial Series
This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code. This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code. See [Tutorials](./tutorials/README.md).
### Core Tutorials
1. [Tutorial 1: Vectors and Matrices](tutorials/tutorial1_vectors.ipynb)
- Definitions of vectors and matrices.
- Vector operations: addition, scalar multiplication, dot product, norms.
- Matrix operations: addition, multiplication, transpose, inverse.
- Matrix and vector norms.
- Examples with `numethods.linalg`.
2. [Tutorial 2: Linear Systems of Equations](tutorials/tutorial2_linear_systems.ipynb)
- Gaussian elimination and GaussJordan.
- LU decomposition.
- Cholesky decomposition.
- Iterative methods: Jacobi and Gauss-Seidel.
- Examples with `numethods.solvers`.
3. [Tutorial 3: Orthogonalization and QR Factorization](tutorials/tutorial3_orthogonalization.ipynb)
- Inner products and orthogonality.
- GramSchmidt process (classical and modified).
- Householder reflections.
- QR decomposition and applications.
- Examples with `numethods.orthogonal`.
4. [Tutorial 4: Root-Finding Methods](tutorials/tutorial4_root_finding.ipynb)
- Bisection method.
- Fixed-point iteration.
- Newtons method.
- Secant method.
- Convergence analysis and error behavior.
- Trace outputs for iteration history.
- Examples with `numethods.roots`.
- [Polynomial Regression Demo](tutorials/polynomial_regression.ipynb)
- Step-by-step example of polynomial regression.
- Shows how to fit polynomials of different degrees to data.
- Visualizes fitted curves against the original data.
---
## Features ## Features

47
tutorials/README.md Normal file
View File

@@ -0,0 +1,47 @@
# Tutorial Series
This package comes with a set of Jupyter notebooks designed as a structured tutorial series in **numerical methods**, both mathematically rigorous and hands-on with code.
## Core Tutorials
1. [Tutorial 1: Vectors and Matrices](./tutorial1_vectors.ipynb)
- Definitions of vectors and matrices.
- Vector operations: addition, scalar multiplication, dot product, norms.
- Matrix operations: addition, multiplication, transpose, inverse.
- Matrix and vector norms.
- Examples with `numethods.linalg`.
2. [Tutorial 2: Linear Systems of Equations](./tutorial2_linear_systems.ipynb)
- Gaussian elimination and GaussJordan.
- LU decomposition.
- Cholesky decomposition.
- Iterative methods: Jacobi and Gauss-Seidel.
- Examples with `numethods.solvers`.
3. [Tutorial 3: Orthogonalization and QR Factorization](./tutorial3_orthogonalization.ipynb)
- Inner products and orthogonality.
- GramSchmidt process (classical and modified).
- Householder reflections.
- QR decomposition and applications.
- Examples with `numethods.orthogonal`.
4. [Tutorial 4: Root-Finding Methods](./tutorial4_root_finding.ipynb)
- Bisection method.
- Fixed-point iteration.
- Newtons method.
- Secant method.
- Convergence analysis and error behavior.
- Trace outputs for iteration history.
- Examples with `numethods.roots`.
- [Polynomial Regression Demo](./polynomial_regression.ipynb)
- Step-by-step example of polynomial regression.
- Shows how to fit polynomials of different degrees to data.
- Visualizes fitted curves against the original data.
---

View File

@@ -142,7 +142,7 @@
"## 5. Basic operations\n", "## 5. Basic operations\n",
"\n", "\n",
"### 5.1 Vector addition and subtraction\n", "### 5.1 Vector addition and subtraction\n",
"For $ u, v \\in \\mathbb{R}^n $:\n", "For $u, v \\in \\mathbb{R}^n$:\n",
"\n", "\n",
"$$\n", "$$\n",
"u + v = \\begin{bmatrix} u_1 + v_1 \\\\ u_2 + v_2 \\\\ \\vdots \\\\ u_n + v_n \\end{bmatrix},\n", "u + v = \\begin{bmatrix} u_1 + v_1 \\\\ u_2 + v_2 \\\\ \\vdots \\\\ u_n + v_n \\end{bmatrix},\n",
@@ -180,7 +180,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5.2 Scalar multiplication\n", "### 5.2 Scalar multiplication\n",
"For $ \\alpha \\in \\mathbb{R}, v \\in \\mathbb{R}^n $:\n", "For $\\alpha \\in \\mathbb{R}, v \\in \\mathbb{R}^n$:\n",
"\n", "\n",
"$$\n", "$$\n",
"\\alpha v = \\begin{bmatrix} \\alpha v_1 \\\\ \\alpha v_2 \\\\ \\vdots \\\\ \\alpha v_n \\end{bmatrix}.\n", "\\alpha v = \\begin{bmatrix} \\alpha v_1 \\\\ \\alpha v_2 \\\\ \\vdots \\\\ \\alpha v_n \\end{bmatrix}.\n",
@@ -215,7 +215,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5.3 Matrix addition and subtraction\n", "### 5.3 Matrix addition and subtraction\n",
"For $ A, B \\in \\mathbb{R}^{m \\times n} $:\n", "For $A, B \\in \\mathbb{R}^{m \\times n}$:\n",
"\n", "\n",
"$$\n", "$$\n",
"A + B = [ a_{ij} + b_{ij} ], \\quad\n", "A + B = [ a_{ij} + b_{ij} ], \\quad\n",
@@ -254,7 +254,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5.4 Matrix-Vector multiplication\n", "### 5.4 Matrix-Vector multiplication\n",
"For $ A \\in \\mathbb{R}^{m \\times n}, v \\in \\mathbb{R}^n $:\n", "For $A \\in \\mathbb{R}^{m \\times n}, v \\in \\mathbb{R}^n$:\n",
"\n", "\n",
"$$\n", "$$\n",
"(Av)_i = \\sum_{j=1}^n a_{ij} v_j.\n", "(Av)_i = \\sum_{j=1}^n a_{ij} v_j.\n",
@@ -290,7 +290,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5.5 Matrix-Matrix multiplication\n", "### 5.5 Matrix-Matrix multiplication\n",
"For $ A \\in \\mathbb{R}^{m \\times n}, B \\in \\mathbb{R}^{n \\times p} $:\n", "For $A \\in \\mathbb{R}^{m \\times n}, B \\in \\mathbb{R}^{n \\times p}$:\n",
"\n", "\n",
"$$\n", "$$\n",
"(AB)_{ij} = \\sum_{k=1}^n a_{ik} b_{kj}.\n", "(AB)_{ij} = \\sum_{k=1}^n a_{ik} b_{kj}.\n",
@@ -327,7 +327,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"### 5.6 Transpose\n", "### 5.6 Transpose\n",
"For $ A \\in \\mathbb{R}^{m \\times n} $:\n", "For $A \\in \\mathbb{R}^{m \\times n}$:\n",
"\n", "\n",
"$$\n", "$$\n",
"A^T_{ij} = A_{ji}.\n", "A^T_{ij} = A_{ji}.\n",