Files
numethods/numethods/solvers.py

234 lines
8.0 KiB
Python

from __future__ import annotations
from .linalg import Matrix, Vector, forward_substitution, backward_substitution
from .exceptions import (
NonSquareMatrixError,
SingularMatrixError,
NotSymmetricError,
NotPositiveDefiniteError,
ConvergenceError,
)
class LUDecomposition:
"""LU decomposition with partial pivoting: PA = LU"""
def __init__(self, A: Matrix):
if not A.is_square():
raise NonSquareMatrixError("A must be square")
self.n = A.n
self.L = Matrix.identity(self.n)
self.U = A.copy()
self.P = Matrix.identity(self.n)
self.steps: list[tuple[int, Matrix, Matrix, Matrix]] = [] # store pivot steps
self._decompose()
def _decompose(self) -> None:
n = self.n
for k in range(n):
pivot_row = self.U.max_abs_in_col(k, k)
if abs(self.U.data[pivot_row][k]) < 1e-15:
raise SingularMatrixError("Matrix is singular to working precision")
self.U.swap_rows(k, pivot_row)
self.P.swap_rows(k, pivot_row)
if k > 0:
self.L.data[k][:k], self.L.data[pivot_row][:k] = (
self.L.data[pivot_row][:k],
self.L.data[k][:k],
)
for i in range(k + 1, n):
m = self.U.data[i][k] / self.U.data[k][k]
self.L.data[i][k] = m
for j in range(k, n):
self.U.data[i][j] -= m * self.U.data[k][j]
# record step
self.steps.append((k, self.L.copy(), self.U.copy(), self.P.copy()))
def solve(self, b: Vector) -> Vector:
Pb = Vector(
[
sum(self.P.data[i][j] * b[j] for j in range(self.n))
for i in range(self.n)
]
)
y = forward_substitution(self.L, Pb)
x = backward_substitution(self.U, y)
return x
def trace(self):
print("LU Decomposition Trace (steps of elimination)")
for k, L, U, P in self.steps:
print(f"\nStep {k}:")
print(f"L = {L}")
print(f"U = {U}")
print(f"P = {P}")
class GaussJordan:
"""Gauss-Jordan elimination."""
def __init__(self, A: Matrix):
if not A.is_square():
raise NonSquareMatrixError("A must be square")
self.n = A.n
self.A = A.copy()
self.steps: list[tuple[int, Matrix]] = []
def solve(self, b: Vector) -> Vector:
n = self.n
Ab = self.A.augment(b)
for col in range(n):
pivot = Ab.max_abs_in_col(col, col)
if abs(Ab.data[pivot][col]) < 1e-15:
raise SingularMatrixError("Matrix is singular or nearly singular")
Ab.swap_rows(col, pivot)
pv = Ab.data[col][col]
Ab.data[col] = [v / pv for v in Ab.data[col]]
for r in range(n):
if r == col:
continue
factor = Ab.data[r][col]
Ab.data[r] = [
rv - factor * cv for rv, cv in zip(Ab.data[r], Ab.data[col])
]
# record step
self.steps.append((col, Ab.copy()))
return Vector(row[-1] for row in Ab.data)
def trace(self):
print("Gauss-Jordan Trace (row reduction steps)")
for step, Ab in self.steps:
print(f"\nColumn {step}:")
print(f"Augmented matrix = {Ab}")
class Jacobi:
"""Jacobi iterative method for Ax = b."""
def __init__(
self, A: Matrix, b: Vector, tol: float = 1e-10, max_iter: int = 10_000
):
if not A.is_square():
raise NonSquareMatrixError("A must be square")
if A.n != len(b):
raise ValueError("Dimension mismatch")
self.A = A.copy()
self.b = b.copy()
self.tol = tol
self.max_iter = max_iter
self.history: list[float] = []
def solve(self, x0: Vector | None = None) -> Vector:
n = self.A.n
x = Vector([0.0] * n) if x0 is None else x0.copy()
for _ in range(self.max_iter):
x_new = [0.0] * n
for i in range(n):
diag = self.A.data[i][i]
if abs(diag) < 1e-15:
raise SingularMatrixError("Zero diagonal entry in Jacobi")
s = sum(self.A.data[i][j] * x[j] for j in range(n) if j != i)
x_new[i] = (self.b[i] - s) / diag
x_new = Vector(x_new)
r = (self.A @ x_new) - self.b
res_norm = r.norm2()
self.history.append(res_norm)
if res_norm <= self.tol * (1.0 + x_new.norm2()):
return x_new
x = x_new
raise ConvergenceError("Jacobi did not converge within max_iter")
def trace(self):
print("Jacobi Iteration Trace")
print(f"{'iter':>6} | {'residual norm':>14}")
print("-" * 26)
for k, res in enumerate(self.history):
print(f"{k:6d} | {res:14.6e}")
class GaussSeidel:
"""Gauss-Seidel iterative method for Ax = b."""
def __init__(
self, A: Matrix, b: Vector, tol: float = 1e-10, max_iter: int = 10_000
):
if not A.is_square():
raise NonSquareMatrixError("A must be square")
if A.n != len(b):
raise ValueError("Dimension mismatch")
self.A = A.copy()
self.b = b.copy()
self.tol = tol
self.max_iter = max_iter
self.history: list[float] = []
def solve(self, x0: Vector | None = None) -> Vector:
n = self.A.n
x = Vector([0.0] * n) if x0 is None else x0.copy()
for _ in range(self.max_iter):
x_old = x.copy()
for i in range(n):
diag = self.A.data[i][i]
if abs(diag) < 1e-15:
raise SingularMatrixError("Zero diagonal entry in Gauss-Seidel")
s1 = sum(self.A.data[i][j] * x[j] for j in range(i))
s2 = sum(self.A.data[i][j] * x_old[j] for j in range(i + 1, n))
x[i] = (self.b[i] - s1 - s2) / diag
r = (self.A @ x) - self.b
res_norm = r.norm2()
self.history.append(res_norm)
if res_norm <= self.tol * (1.0 + x.norm2()):
return x
raise ConvergenceError("Gauss-Seidel did not converge within max_iter")
def trace(self):
print("Gauss-Seidel Iteration Trace")
print(f"{'iter':>6} | {'residual norm':>14}")
print("-" * 26)
for k, res in enumerate(self.history):
print(f"{k:6d} | {res:14.6e}")
class Cholesky:
"""Cholesky factorization A = L L^T for SPD matrices."""
def __init__(self, A: Matrix):
if not A.is_square():
raise NonSquareMatrixError("A must be square")
n = A.n
for i in range(n):
for j in range(i + 1, n):
if abs(A.data[i][j] - A.data[j][i]) > 1e-12:
raise NotSymmetricError("Matrix is not symmetric")
self.n = n
self.L = Matrix.zeros(n, n)
self.steps: list[tuple[int, Matrix]] = []
self._decompose(A.copy())
def _decompose(self, A: Matrix) -> None:
n = self.n
for i in range(n):
for j in range(i + 1):
s = sum(self.L.data[i][k] * self.L.data[j][k] for k in range(j))
if i == j:
val = A.data[i][i] - s
if val <= 0.0:
raise NotPositiveDefiniteError(
"Matrix is not positive definite"
)
self.L.data[i][j] = val**0.5
else:
self.L.data[i][j] = (A.data[i][j] - s) / self.L.data[j][j]
# record after each row i
self.steps.append((i, self.L.copy()))
def solve(self, b: Vector) -> Vector:
y = forward_substitution(self.L, b)
x = backward_substitution(self.L.transpose(), y)
return x
def trace(self):
print("Cholesky Decomposition Trace")
for i, L in self.steps:
print(f"\nRow {i}:")
print(f"L = {L}")