forked from denizdonmez/numethods
234 lines
8.0 KiB
Python
234 lines
8.0 KiB
Python
from __future__ import annotations
|
|
from .linalg import Matrix, Vector, forward_substitution, backward_substitution
|
|
from .exceptions import (
|
|
NonSquareMatrixError,
|
|
SingularMatrixError,
|
|
NotSymmetricError,
|
|
NotPositiveDefiniteError,
|
|
ConvergenceError,
|
|
)
|
|
|
|
|
|
class LUDecomposition:
|
|
"""LU decomposition with partial pivoting: PA = LU"""
|
|
|
|
def __init__(self, A: Matrix):
|
|
if not A.is_square():
|
|
raise NonSquareMatrixError("A must be square")
|
|
self.n = A.n
|
|
self.L = Matrix.identity(self.n)
|
|
self.U = A.copy()
|
|
self.P = Matrix.identity(self.n)
|
|
self.steps: list[tuple[int, Matrix, Matrix, Matrix]] = [] # store pivot steps
|
|
self._decompose()
|
|
|
|
def _decompose(self) -> None:
|
|
n = self.n
|
|
for k in range(n):
|
|
pivot_row = self.U.max_abs_in_col(k, k)
|
|
if abs(self.U.data[pivot_row][k]) < 1e-15:
|
|
raise SingularMatrixError("Matrix is singular to working precision")
|
|
self.U.swap_rows(k, pivot_row)
|
|
self.P.swap_rows(k, pivot_row)
|
|
if k > 0:
|
|
self.L.data[k][:k], self.L.data[pivot_row][:k] = (
|
|
self.L.data[pivot_row][:k],
|
|
self.L.data[k][:k],
|
|
)
|
|
for i in range(k + 1, n):
|
|
m = self.U.data[i][k] / self.U.data[k][k]
|
|
self.L.data[i][k] = m
|
|
for j in range(k, n):
|
|
self.U.data[i][j] -= m * self.U.data[k][j]
|
|
# record step
|
|
self.steps.append((k, self.L.copy(), self.U.copy(), self.P.copy()))
|
|
|
|
def solve(self, b: Vector) -> Vector:
|
|
Pb = Vector(
|
|
[
|
|
sum(self.P.data[i][j] * b[j] for j in range(self.n))
|
|
for i in range(self.n)
|
|
]
|
|
)
|
|
y = forward_substitution(self.L, Pb)
|
|
x = backward_substitution(self.U, y)
|
|
return x
|
|
|
|
def trace(self):
|
|
print("LU Decomposition Trace (steps of elimination)")
|
|
for k, L, U, P in self.steps:
|
|
print(f"\nStep {k}:")
|
|
print(f"L = {L}")
|
|
print(f"U = {U}")
|
|
print(f"P = {P}")
|
|
|
|
|
|
class GaussJordan:
|
|
"""Gauss-Jordan elimination."""
|
|
|
|
def __init__(self, A: Matrix):
|
|
if not A.is_square():
|
|
raise NonSquareMatrixError("A must be square")
|
|
self.n = A.n
|
|
self.A = A.copy()
|
|
self.steps: list[tuple[int, Matrix]] = []
|
|
|
|
def solve(self, b: Vector) -> Vector:
|
|
n = self.n
|
|
Ab = self.A.augment(b)
|
|
for col in range(n):
|
|
pivot = Ab.max_abs_in_col(col, col)
|
|
if abs(Ab.data[pivot][col]) < 1e-15:
|
|
raise SingularMatrixError("Matrix is singular or nearly singular")
|
|
Ab.swap_rows(col, pivot)
|
|
pv = Ab.data[col][col]
|
|
Ab.data[col] = [v / pv for v in Ab.data[col]]
|
|
for r in range(n):
|
|
if r == col:
|
|
continue
|
|
factor = Ab.data[r][col]
|
|
Ab.data[r] = [
|
|
rv - factor * cv for rv, cv in zip(Ab.data[r], Ab.data[col])
|
|
]
|
|
# record step
|
|
self.steps.append((col, Ab.copy()))
|
|
return Vector(row[-1] for row in Ab.data)
|
|
|
|
def trace(self):
|
|
print("Gauss-Jordan Trace (row reduction steps)")
|
|
for step, Ab in self.steps:
|
|
print(f"\nColumn {step}:")
|
|
print(f"Augmented matrix = {Ab}")
|
|
|
|
|
|
class Jacobi:
|
|
"""Jacobi iterative method for Ax = b."""
|
|
|
|
def __init__(
|
|
self, A: Matrix, b: Vector, tol: float = 1e-10, max_iter: int = 10_000
|
|
):
|
|
if not A.is_square():
|
|
raise NonSquareMatrixError("A must be square")
|
|
if A.n != len(b):
|
|
raise ValueError("Dimension mismatch")
|
|
self.A = A.copy()
|
|
self.b = b.copy()
|
|
self.tol = tol
|
|
self.max_iter = max_iter
|
|
self.history: list[float] = []
|
|
|
|
def solve(self, x0: Vector | None = None) -> Vector:
|
|
n = self.A.n
|
|
x = Vector([0.0] * n) if x0 is None else x0.copy()
|
|
for _ in range(self.max_iter):
|
|
x_new = [0.0] * n
|
|
for i in range(n):
|
|
diag = self.A.data[i][i]
|
|
if abs(diag) < 1e-15:
|
|
raise SingularMatrixError("Zero diagonal entry in Jacobi")
|
|
s = sum(self.A.data[i][j] * x[j] for j in range(n) if j != i)
|
|
x_new[i] = (self.b[i] - s) / diag
|
|
x_new = Vector(x_new)
|
|
r = (self.A @ x_new) - self.b
|
|
res_norm = r.norm2()
|
|
self.history.append(res_norm)
|
|
if res_norm <= self.tol * (1.0 + x_new.norm2()):
|
|
return x_new
|
|
x = x_new
|
|
raise ConvergenceError("Jacobi did not converge within max_iter")
|
|
|
|
def trace(self):
|
|
print("Jacobi Iteration Trace")
|
|
print(f"{'iter':>6} | {'residual norm':>14}")
|
|
print("-" * 26)
|
|
for k, res in enumerate(self.history):
|
|
print(f"{k:6d} | {res:14.6e}")
|
|
|
|
|
|
class GaussSeidel:
|
|
"""Gauss-Seidel iterative method for Ax = b."""
|
|
|
|
def __init__(
|
|
self, A: Matrix, b: Vector, tol: float = 1e-10, max_iter: int = 10_000
|
|
):
|
|
if not A.is_square():
|
|
raise NonSquareMatrixError("A must be square")
|
|
if A.n != len(b):
|
|
raise ValueError("Dimension mismatch")
|
|
self.A = A.copy()
|
|
self.b = b.copy()
|
|
self.tol = tol
|
|
self.max_iter = max_iter
|
|
self.history: list[float] = []
|
|
|
|
def solve(self, x0: Vector | None = None) -> Vector:
|
|
n = self.A.n
|
|
x = Vector([0.0] * n) if x0 is None else x0.copy()
|
|
for _ in range(self.max_iter):
|
|
x_old = x.copy()
|
|
for i in range(n):
|
|
diag = self.A.data[i][i]
|
|
if abs(diag) < 1e-15:
|
|
raise SingularMatrixError("Zero diagonal entry in Gauss-Seidel")
|
|
s1 = sum(self.A.data[i][j] * x[j] for j in range(i))
|
|
s2 = sum(self.A.data[i][j] * x_old[j] for j in range(i + 1, n))
|
|
x[i] = (self.b[i] - s1 - s2) / diag
|
|
r = (self.A @ x) - self.b
|
|
res_norm = r.norm2()
|
|
self.history.append(res_norm)
|
|
if res_norm <= self.tol * (1.0 + x.norm2()):
|
|
return x
|
|
raise ConvergenceError("Gauss-Seidel did not converge within max_iter")
|
|
|
|
def trace(self):
|
|
print("Gauss-Seidel Iteration Trace")
|
|
print(f"{'iter':>6} | {'residual norm':>14}")
|
|
print("-" * 26)
|
|
for k, res in enumerate(self.history):
|
|
print(f"{k:6d} | {res:14.6e}")
|
|
|
|
|
|
class Cholesky:
|
|
"""Cholesky factorization A = L L^T for SPD matrices."""
|
|
|
|
def __init__(self, A: Matrix):
|
|
if not A.is_square():
|
|
raise NonSquareMatrixError("A must be square")
|
|
n = A.n
|
|
for i in range(n):
|
|
for j in range(i + 1, n):
|
|
if abs(A.data[i][j] - A.data[j][i]) > 1e-12:
|
|
raise NotSymmetricError("Matrix is not symmetric")
|
|
self.n = n
|
|
self.L = Matrix.zeros(n, n)
|
|
self.steps: list[tuple[int, Matrix]] = []
|
|
self._decompose(A.copy())
|
|
|
|
def _decompose(self, A: Matrix) -> None:
|
|
n = self.n
|
|
for i in range(n):
|
|
for j in range(i + 1):
|
|
s = sum(self.L.data[i][k] * self.L.data[j][k] for k in range(j))
|
|
if i == j:
|
|
val = A.data[i][i] - s
|
|
if val <= 0.0:
|
|
raise NotPositiveDefiniteError(
|
|
"Matrix is not positive definite"
|
|
)
|
|
self.L.data[i][j] = val**0.5
|
|
else:
|
|
self.L.data[i][j] = (A.data[i][j] - s) / self.L.data[j][j]
|
|
# record after each row i
|
|
self.steps.append((i, self.L.copy()))
|
|
|
|
def solve(self, b: Vector) -> Vector:
|
|
y = forward_substitution(self.L, b)
|
|
x = backward_substitution(self.L.transpose(), y)
|
|
return x
|
|
|
|
def trace(self):
|
|
print("Cholesky Decomposition Trace")
|
|
for i, L in self.steps:
|
|
print(f"\nRow {i}:")
|
|
print(f"L = {L}")
|