Files
numethods/numethods/orthogonal.py

129 lines
4.3 KiB
Python

from __future__ import annotations
from typing import List
from .linalg import Matrix, Vector, backward_substitution
from .exceptions import SingularMatrixError
class QRGramSchmidt:
"""Classical Gram-Schmidt orthogonalization."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.Q = Matrix.zeros(self.m, self.n)
self.R = Matrix.zeros(self.n, self.n)
self._decompose(A)
def _decompose(self, A: Matrix) -> None:
m, n = self.m, self.n
Qcols: List[Vector] = []
for j in range(n):
v = A.col(j)
for k in range(j):
qk = Qcols[k]
r = qk.dot(v)
self.R.data[k][j] = r
v = Vector([vi - r * qi for vi, qi in zip(v.data, qk.data)])
norm = sum(vi * vi for vi in v.data) ** 0.5
if abs(norm) < 1e-15:
raise SingularMatrixError("Linearly dependent columns in Gram-Schmidt")
self.R.data[j][j] = norm
qj = Vector([vi / norm for vi in v.data])
Qcols.append(qj)
for i in range(m):
self.Q.data[i][j] = qj[i]
class QRModifiedGramSchmidt:
"""Modified Gram-Schmidt orthogonalization."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.Q = Matrix.zeros(self.m, self.n)
self.R = Matrix.zeros(self.n, self.n)
self._decompose(A)
def _decompose(self, A: Matrix) -> None:
m, n = self.m, self.n
V = [A.col(j).data for j in range(n)]
for i in range(n):
vi = Vector(V[i])
norm = sum(v * v for v in vi.data) ** 0.5
if abs(norm) < 1e-15:
raise SingularMatrixError("Linearly dependent columns in MGS")
self.R.data[i][i] = norm
qi = Vector([v / norm for v in vi.data])
for r in range(m):
self.Q.data[r][i] = qi[r]
for j in range(i + 1, n):
r = qi.dot(Vector(V[j]))
self.R.data[i][j] = r
V[j] = [vj - r * qi_k for vj, qi_k in zip(V[j], qi.data)]
class QRHouseholder:
"""Stable QR decomposition using Householder reflectors."""
def __init__(self, A: Matrix):
self.m, self.n = A.shape()
self.R = A.copy()
self.Q = Matrix.identity(self.m)
self._decompose()
def _decompose(self) -> None:
m, n = self.m, self.n
for k in range(min(m, n)):
x = [self.R.data[i][k] for i in range(k, m)]
normx = sum(xi * xi for xi in x) ** 0.5
if normx < 1e-15:
continue
sign = 1.0 if x[0] >= 0 else -1.0
u1 = x[0] + sign * normx
v = [xi / u1 if i > 0 else 1.0 for i, xi in enumerate(x)]
normv = Vector(v).norm2()
v = [vi / normv for vi in v]
for j in range(k, n):
s = sum(v[i] * self.R.data[k + i][j] for i in range(len(v)))
for i in range(len(v)):
self.R.data[k + i][j] -= 2 * s * v[i]
for j in range(m):
s = sum(v[i] * self.Q.data[j][k + i] for i in range(len(v)))
for i in range(len(v)):
self.Q.data[j][k + i] -= 2 * s * v[i]
# self.Q = self.Q.transpose()
class QRSolver:
"""Solve Ax=b given QR (square A)."""
def __init__(self, qr: QRHouseholder | QRGramSchmidt | QRModifiedGramSchmidt):
self.Q, self.R = qr.Q, qr.R
def solve(self, b: Vector) -> Vector:
Qtb = Vector(
[
sum(self.Q.data[i][j] * b[i] for i in range(self.Q.m))
for j in range(self.Q.n)
]
)
return backward_substitution(self.R, Qtb)
class LeastSquaresSolver:
"""Solve overdetermined system Ax ≈ b in least squares sense using QR."""
def __init__(self, A: Matrix, b: Vector):
self.A, self.b = A, b
def solve(self) -> Vector:
qr = QRHouseholder(self.A)
Q, R = qr.Q, qr.R
# Compute Q^T b (dimension m)
Qtb_full = [
sum(Q.data[i][j] * self.b[i] for i in range(Q.m)) for j in range(Q.n)
]
# Take only first n entries
Qtb = Vector(Qtb_full[: self.A.n])
# Extract leading nxn block of R
Rtop = Matrix([R.data[i][: self.A.n] for i in range(self.A.n)])
return backward_substitution(Rtop, Qtb)