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These notes are written for the ”RKHS Learning Seminars” at the Institute of Ap-
plied Mathematics, METU. It aims to introduce the audience to the fundamental ideas
of elementary Hilbert space theory. We assume the participants have good knowledge
of linear algebra and advanced calculus. The material covered is relatively standard
and contains no new mathematics. The book ”A Primer on Reproducing Kernel Hilbert
Spaces.” by J.H. Manton and P. Amblard was chosen as the principal reference for this
seminar series. Hence, it shaped the structure of these notes. Additional references
used in these notes plus references that can be used for further studies are listed in
bibliography.

1 Inner Product Spaces

1.1 Rudiments

Let V be a vector space over C (or R). Let B : V × V → C be a function satisfying

•B(x, y) = B(y, x) ∀x, y ∈ V,

•B(x + λy, ξ) = B(x, ξ) + λB(y, ξ) ∀x, y, ξ ∈ V, λ ∈ C, (*)
•B(x, x) ≥ 0 ∀x ∈ V.

An important property of such functions (usually refered to as sesquilinear fuctions) is:

|B(x, y)| ≤ B(x, x)1/2B(y, y)1/2 ∀x, y ∈ V. (1)

To see this let us look at:

0 ≤ B(x + ty, x + ty) = B(x, x) + tB(y, x) + tB(x, y) + |t|2B(y, y)

= B(x, x) + 2Re(tB(x, y)) + |t|2B(y, y) ∀x, y ∈ V, t ∈ C

Choosing t = sB(y, x), s ∈ R, we have;

0 ≤ B(x, x) + 2s | B(x, y) |2 +s2 | B(y, x) |2 B(y, y).

So the discriminant of this polynomial P(s) must satisfy,

4B(x, y)4 − 4B(x, x)B(y, y) | B(y, x) |2≤ 0

or

| B(x, y) |4 ≤ B(x, x)B(y, y) | B(y, x) |2

| B(x, y) |2 ≤ B(x, x)B(y, y).

This simple observation is the source of many inequalities, such as∣∣∣∑
i

xiyi

∣∣∣ ≤ (∑ | xi |
2 )1/2(∑ | yi |

2 )1/2,
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or its continuous analog

∣∣∣∫ b

a
f (t)g(t)dt

∣∣∣ ≤ ( ∫ b

a
| f (t) |2 dt

)1/2( ∫ b

a
| g(t) |2 dt

)1/2
∀ f , g ∈ C[a, b].

Another property of such functions is:

B(x + y, x + y) ≤ B(x, x) + 2ReB(x, y) + B(y, y)
≤ B(x, x) + 2B(x, x)1/2B(y, y)1/2 + B(y, y)
=
(
B(x, x)1/2 + B(y, y)1/2)2. (2)

Recall that
An inner product ⟨ , ⟩ on (V,C) is a function on V × V that satisfy the conditions (*)
with the additional condition:

⟨x, x⟩ = 0⇐⇒ x = 0.

1.2 Distance and Continuity of Linear Operators
An inner product gives a "norm" on V by setting:

∥ x ∥= ⟨x, x⟩1/2,

which can be thought as a "distance of x to the vector 0. In fact

d(x, y) =∥ x − y ∥

satisfies the usual conditions of a metric on V . Namely:

• d(x, y) ≤ d(x, z) + d(z, y),

• d(x, y) = d(y, x),

• d(x, x) ≥ 0 and d(x, x) = 0 ⇔ x = 0.

Hence an inner product on V induces a notion of "distance" between points in V ,
therefore introduce notions like "convergence" of sequences via

xn → x ⇔∥ xn − x ∥→ 0

and "continuity" of functions f : V1 → V2 between inner product spaces via

f is continuous at a point x in case: xn → x ∈ V1 =⇒ f (xn)→ f (x) ∈ V2.

Note that for linear operators convergence can be checked by using norms.

Theorem 1. For a linear operator T : (V1, ⟨ , ⟩1)→ (V2, ⟨ , ⟩2) the following are equiv-
alent:
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(i) T is continuous at the point 0,

(ii) T is continuous at every point of V (3)

(iii) ∃c > 0 ; ∥ T (x) ∥2≤ c ∥ x ∥1 .

Proof. To see "(i) =⇒ (ii)", suppose T is continuous at 0. Fix x and suppose xn → x,
i.e. xn − x→ 0, then T (xn) − T (x) = T (xn − x)→ T (0) = 0 or, T is continuous at x.

To show "(i) =⇒ (iii)", suppose no such c exists. Then for each N ∈ N, we can
find xN , 0 such that

∥ T (xN) ∥2≥ N ∥ xN ∥1 .

Consider the sequence {uN}N , where uN := xN√
N ∥xN∥1

. We have:

∥ uN ∥1=

∣∣∣∣∣∣∣∣∣∣ xN
√

N ∥ xN ∥1

∣∣∣∣∣∣∣∣∣∣
1
=

∥ xN ∥1
√

N ∥ xN ∥1
=

1
√

N
→ 0 as N → ∞.

This implies T (uN)→ 0, but we also have:

∥ T (uN) ∥2=
∥ T (xN) ∥2
√

N ∥ xN ∥1
≥

N ∥ xN ∥1
√

N ∥ xN ∥1
=
√

N,

so the assumption leads to a contradiction. Rest of the assertion is self evident. □

Remark
In the special case of finite dimensional inner product spaces V1 and V2, every operator
T : V1 → V2 is automatically continuous since if {e1, · · · , eN} is an orthonormal basis
in a finite dimensional inner product space (V1, ⟨ , ⟩), then, if xn → x, since

xn = cn
1e1 + · · · + cn

NeN =

N∑
i=1

cn
i ei, x = c1e1 + · · · + cNeN =

N∑
i=1

ciei

we have:

∥ xn − x ∥2 =
〈∑N

i=1 cn
i ei−

∑N
i=1 ciei ,

∑N
i=1 cn

i ei−
∑N

i=1 ciei

〉
=
〈∑N

i=1(cn
i −ci )ei ,

∑N
i=1(cn

i −ci )ei

〉
= ∑N

i=1(cn
i −ci )·
〈

ei ,
∑N

j=1(cn
j−c j )e j

〉
= ∑N

i=1
∑N

j=1(cn
i −ci )(cn

j−c j )⟨ei ,e j⟩

= ∑N
i=1 |c

n
i −ci |

2,

since ⟨ei, e j⟩ = 0 for i , j and ⟨ei, ei⟩ =∥ ei ∥
2= 1. So xn − x → 0 ⇐⇒| cn

i − ci |→ 0,
∀i = 1, · · · ,N,⇐⇒ cn

i → ci ∀i = 1, · · · ,N.

With respect to orthonormal basis {ei}
N
i=1 of V1 and { f j}

M
j=1 of V2, T can be repre-

sented as a matrix A = {ai j}, where Tei =
∑M

j=1 ai j f j, so

T (x) = T
( N∑

i=1

xiei

)
=

M∑
j=1

( N∑
i=1

ai j xi

)
f j, T (xn − x) =

M∑
j=1

N∑
i=1

ai j(xn
i − xi) f j.

Hence T xn → T x as xn → x.

At this point, we would like to recall Gram-Schmidt orthogonalization process:
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Given n linearly independent elements v1, · · · , vn in an inner product space (V, ⟨ , ⟩),
consider the inductively defined sequence of vectors:

u1 = v1, u2 = v2 −
⟨v2, u1⟩

⟨u1, u1⟩
u1, · · · , uk = vk −

k−1∑
i=1

⟨vk, ui⟩

⟨ui, ui⟩
ui.

A routine check will show that ui’s for 1 ≤ k ≤ n, are orthogonal to each other,
i.e, ⟨ui, u j⟩ = 0, and the normalized

{ ui
∥ui∥

}
vectors form an orthonormal basis for

span{v1, · · · , vn}.

Also observe that each uk ∈ span{v1, · · · , vk}.

This algorithm works also in infinite dimensional inner product spaces if a sequence
of finitely linearly independent vectors {vi}

∞
i=1 are given, and it yields a sequence or-

thonormal vectors {ui}
∞
i=1 spanning the vector subspace spanned by {vi}’s.

Automatic continuity of linear operators fails if the dimension is not finite.

Example 0
Let V = (C[0, 1], ⟨ , ⟩) be the vector space of real valued continuous functions on [0, 1]
with the inner product

⟨ f , g⟩ :=
∫ 1

0
f (t)g(t)dt.

Let k0 : C[0, 1] → (R, ⟨ , ⟩) be the linear operator k0( f ) :=
f (0).

Consider the sequence { fn} in C[0, 1] defined as:

fn(t) =
{
−n3t + n 0 ≤ t ≤ 1

n2 ,

0 1
n2 < t ≤ 1.

Note ∥ fn ∥=
∫ 1

0 fn(t)2dt ≤ 1, yet ∥ k0( fn) ∥=| fn(0) |= n, so ∃ no C > 0 such that

∥ k0( f ) ∥≤ C ∥ f ∥ ∀ f ∈ C[0, 1].

Hence k0 is not continuous.

This is one of the reasons why continuity (in general the topology) is suppressed in
finite dimensional linear algebra and why in infinite dimensional linear algebra topol-
ogy plays an important role if one wants to develop a reasonable theory.

We close this section with an elementary observation about inner product spaces
that generalizes the Parallelogram law of elementary geometry:

∥ x − y ∥2 + ∥ x + y ∥2 = ⟨x − y, x − y⟩ + ⟨x + y, x + y⟩

= ⟨x, x⟩ − 2Re⟨x, y⟩ + ⟨y, y⟩ + ⟨x, x⟩ + 2Re⟨x, y⟩ + ⟨y, y⟩

= 2 ∥ x ∥2 +2 ∥ y ∥2,

or

∥ x + y ∥2 + ∥ x − y ∥2= 2 ∥ x ∥2 +2 ∥ y ∥2 .
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2 Hilbert Spaces

2.1 Definition
If a sequence "clusters" in an inner product space, it is desirable that it converges some-
where. In other words if the distances between the points of the sequence gets very
small as one proceeds to the tail of the sequence (in some sense one wants to assume
that there are no "holes" in the space!)
Example 2. In C[0, 1] of Example 0, for n ≥ 2 let:

fn(t) =


1 0<t≤ 1

2 −
1
n

−nt+ n
2

1
2 −

1
n ≤t≤ 1

2

0 1
2 <t.

∥ fn − fm ∥
2=

∫ 1
2

1
2 −

1
n

| ( fn − fm)(t) |2 dt ≤
4
n

if m > n.

So limn,m→∞ ∥ fn − fm ∥2= 0, and yet if ∃F ∈ C[0, 1] such that ∥ fn − F ∥2→ 0;

∥ fn − F ∥2=
∫ 1

2 −
1
n

0
| F − 1 |2 +

∫ 1
2

1
2 −

1
n

| F − fn |
2 +

∫ 1

1
2

| F |2→ 0.

Then F ≡ 0 on [1/2, 1] and F ≡ 1 on any closed interval [0, α], α < 1/2. This means:

1 = lim
t→(1/2)−

F(t) = lim
t→(1/2)+

F(t) = 0.

So ∃ no such F ∈ C[0, 1].

Let us establish some terminology:

Definition 3. • A sequence {xn} in an inner product space is said to be Cauchy in
case ∀ε > 0 ∃N such that if n,m ≥ N then ∥ xn − xm ∥≤ ε

• An inner product space (V, ⟨ , ⟩) is called complete in case every Cauchy se-
quence converges to a point in V

• A complete inner product space is called a Hilbert space.

Main Example
ℓ2 = {(xn) :

∑
n

| xn |
2< ∞} with ⟨x, y⟩ :=

∑
n

xnyn, for x = (xn), y = (yn).

This makes sense by Equation (1) of Part 1. If xα = {xαn }
∞
n=1, α = 1, 2, · · · is a Cauchy

sequence in ℓ2 then fix ε > 0, ∃Mε for every N

∥ xα − xβ ∥2=
N∑

n=1

| xαn − xβn |
2 +

∞∑
n=N+1

| xαn − xβn |
2≤ ε2/4 if α, β ≥ M.

Then ξαN := {xαn }
N
n=1 is Cauchy in CN , so it converges in CN .

In particular, ∃x = (xn)∞n=1 such that xαn
α→∞
−−−−→ xn ∀n and ξαN → (x1, · · · , xN) in CN .
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Therefore for any S , and α ≥ Mε, choose β so that β ≥ Mε and
∑S

n=1 | x
β
n − xn |

2≤ ε2/4.

=⇒
( S∑

n=1

| xαn − xn |
2
)1/2
≤
( S∑

n=1

| xαn − xβn |
2
)1/2
+
( S∑

n=1

| xβn − xn |
2
)1/2
≤ ε,

=⇒

∞∑
n=1

| xαn − xn |
2≤ ε ∀α ≥ Mε =⇒ (xn) ∈ ℓ2 and xα → x.

So ℓ2 is a Hilbert space.

Notation
For any subset S of a Hilbert space (H, ⟨ , ⟩), S ⊥ will denote the set of all elements of
H that are orthogonal to elements of S . That is:

S ⊥ := {x ∈ H : ⟨x, s⟩ = 0∀s ∈ S }.

Clearly S ⊥ is a subspace, and is closed in the sense that it contains the limit points
of all Cauchy sequences in it, since xn ∈ S ⊥, n = 1, 2, · · · , and xn → x implies that

| ⟨x, s⟩ |=| ⟨xn, s⟩ − ⟨x, s⟩ |=| ⟨xn − x, s⟩ |≤∥ xn − x ∥ ∥ s ∥
n→∞
−−−−→ 0 =⇒ x ∈ S ⊥.

Hence S ⊥ is itself a Hilbert space under ⟨ , ⟩.

2.2 The Main Theorem
In practice, one needs to know the existence of a point in a given set C = 0 of a Hilbert
space that is closest to 0, and if it exists, whether this point is unique.

One can get a satisfactory answer if C is a closed convex set in H. Closed in the
sense that it contains all its limit points (i.e., xn → x, xn ∈ C =⇒ x ∈ C), and convex in
the sense that ∀x, y ∈ C, the midpoint (x + y)/2 ∈ C.

Theorem 4. Given a closed convex set C in a Hilbert space H, ∃! point x ∈ C that is
closest to 0.

Proof. We might as well assume 0 < C. Choose a sequence {xn} ∈ C such that ∥ xn ∥→

infx∈C ∥ x ∥:= d.

1
2
∥ xn − xm ∥

2 =∥ xn ∥
2 + ∥ xm ∥

2 −
1
2
∥ xn + xm ∥

2 (parallelogram law)

=∥ xn ∥
2 + ∥ xm ∥

2 −
1
2

(
4
∣∣∣∣∣∣∣∣∣∣ xn + xm

2

∣∣∣∣∣∣∣∣∣∣2) (convexity)

≤∥ xn ∥
2 + ∥ xm ∥

2 −2d2 → 2d2 − 2d2 = 0 as n,m→ ∞.

So, by taking limits as n,m → ∞, limn,m→∞ ∥ xn − xm ∥= 0, i.e., {xn} is Cauchy, so it
converges to an x0 ∈ C. Clearly:

∥ x0 ∥=∥ x0 − xn + xn ∥≤∥ x0 − xn ∥ + ∥ xn ∥,

so ∥ x0 ∥= d. If ∃x0 , y0 ∈ C with ∥ x0 ∥=∥ y0 ∥= d, then again by Parallelogram law:

∥ x0 − y0 ∥
2

2
= −
∥ x0 − y0 ∥

2

2
+ ∥ x0 ∥

2 + ∥ y0 ∥
2≤ −2d2 + 2d2 = 0 =⇒ x0 = y0. □

7



DISCUSSION
Now let us apply this result to problem of finding the nearest point to a given

point x0 in a closed subspace M of H.
By the theorem, the point we are seeking is the point x0

minus the point with smallest norm of x0+M. Call this point
P(x0) ∈ M.

∥ x0 − P(x0) ∥= inf
m∈M
∥ x0 + m ∥= inf

m∈M
∥ x0 − m ∥ .

Set Q(x) := x − P(x). Let us look at the properties of P:
For m ∈ M consider:

∥ Q(x0) ∥2≤∥ Q(x0) + λm ∥2=∥ Q(x0) ∥2 +2Reλ⟨Q(x0),m⟩+ | λ |2∥ m ∥2 .

If ⟨Q(x0),m⟩ , 0, choose λ = t ⟨Q(x0),m⟩
|⟨Q(x0),m⟩| , t ∈ R to get:

0 ≤ 2t
|t| | ⟨Q(x0),m⟩ | + | t | ∥ m ∥2, ∀t ∈ R \ {0}.

Let t → 0−, since t
|t| = −1, we get | ⟨Q(x0),m⟩ |= 0. So Q(x) ⊥ M ∀x ∈ H. Hence:

M ∋ P(x + λy) −
(
P(x) + λP(y)

)
= P(x + λy) − (x + λy) −

(
P(x) − x

)
− λ
(
P(y) − y

)
= −
(
Q(x + λy) − Q(x) − λQ(y)

)
∈ M⊥

By the very definition
P2(x) = P(P(x)) = P(x).

∥ Q(P(x)) ∥= inf
m∈M
∥ P(x) − m ∥= 0 ⇒ QP(x) = 0.

Similarly,

Q(x) = P(Q(x)) + Q(Q(x))

=⇒ M ∋ P(Q(x)) = Q(x) − Q2(x) ∈ M⊥

=⇒ Q2 = Q, PQ = 0.

In particular:

⟨P(x), y⟩ = ⟨P(x), P(y)⟩
⟨x, P(y)⟩ = ⟨P(x), P(y)⟩ and

⟨P(x), y⟩ = ⟨x, P(y)⟩
⟨Q(x), y⟩ = ⟨x,Q(y)⟩

For x ∈ H, x = P(x) + Q(x).

Then:

⟨x, x⟩ = ⟨P(x), P(x)⟩ + ⟨Q(x),Q(x)⟩ ⇒∥ P(x) ∥≤∥ x ∥, ∥ Q(x) ∥≤∥ x ∥ .

We will summarize our findings in:
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Theorem 5 (Main Theorem). Let (H, ⟨ , ⟩) be a Hilbert space and M a closed subset of
H. Then:

• Every element x of H decomposes uniquely as x = xM + xM⊥ , where xM ∈ M and
xM⊥ ∈ M⊥. In other words H = M ⊕ M⊥.

• There exist continuous linear operators P : H → M, Q : H → M⊥ with

∥ P(x) ∥2 + ∥ Q(x) ∥2=∥ x ∥2

such that ∀x ∈ H,
x = P(x) + Q(x)

is the unique decomposition of x into M and M⊥ above, i.e., P+Q = I =Identity.

• P2 = P, PQ = 0, Q2 = Q and

⟨P(x), y⟩ = ⟨x, P(y)⟩, ⟨Q(x), y⟩ = ⟨x,Q(y)⟩

• The operator Q satisfies the quantitative expression:

∥ Q(x) ∥= inf
m∈M
∥ x − m ∥= distance of x to M.

Terminology
We will call the operators P and Q above as projections onto M and M⊥, respectively.

2.3 Consequences of the Main Theorem
Theorem 6 (Riesz Representation Theorem). Let f : H → C be a continuous linear
operator. Then there exists a unique element x f of H with f (x) = ⟨x, x f ⟩.

Conversely, for any y ∈ H, the assignment x → ⟨x, y⟩ defines a continuous linear
operator from H into C.

Proof. Consider a continuous linear operator f : H → C. The kernel K of f , i.e.,
K = {x : f (x) = 0} is a closed subspace of H since f is continuous. Consider a nonzero
element x0 ∈ K⊥ (if no such element exists, we can take x f = 0). For any x ∈ H, the
decomposition

x =
(
x − f (x)

f (x0) x0
)
+
(

f (x)
f (x0) x0

)
is the unique decomposition of x into K⊥ and K since x − f (x)

f (x0) x0 ∈ K. So:〈
x, f (x0)

∥x0∥
2 x0
〉
=
〈

f (x)
f (x0) x0,

f (x0)

∥x0∥
2 x0
〉
= f (x) f (x0)

f (x0)
⟨x0 ,x0⟩

∥x0∥
2 = f (x).

It follows f (x) = ⟨x, x f ⟩ with x f =
f (x0)
∥x0∥

2 x0.
If there exists another x f̃ with f (x) = ⟨x, x f̃ ⟩, then ⟨x, x f − x f̃ ⟩ = 0 ∀x ∈ H. In

particular, ⟨x f − x f̃ , x f − x f̃ ⟩ = 0, which implies x f = x f̃ .
The converse part of the theorem follows readily from the inequality

| ⟨x, y⟩ |≤∥ x ∥ ∥ y ∥ ∀x, y ∈ H. □
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DISCUSSION
Now, given a continuous linear operator T : H1 → H2, define an operator T ∗ : H2 →

H1 as follows:
For any y ∈ H2, T ∗y is the unique element of H1 such that for all x ∈ H1

⟨T x, y⟩ = ⟨x,T ∗y⟩. (3)

Such a T ∗y exists because the assignment x → ⟨T x, y⟩ is a continuous linear operator
from H1 into C (since | ⟨T x, y⟩ |≤∥ T x ∥ ∥ y ∥≤ c ∥ x ∥ ∥ y ∥ for some c > 0). So in view
of the Riesz Representation Theorem there exists unique T ∗y such that the Equation
(3) above holds. This assignment is certainly linear and continuous:

⟨x,T ∗(y1 + λy2)⟩ = ⟨T x, y1 + λy2⟩ = ⟨T x, y1⟩ + λ⟨T x, y2⟩

= ⟨x,T ∗y1⟩ + λ⟨x,T ∗y2⟩ = ⟨x,T ∗y1 + λT ∗y2⟩ ∀x;

∥ T ∗y ∥2 = | ⟨T ∗y,T ∗y⟩ |= | ⟨TT ∗y, y⟩ | ≤ c ∥ T ∗y ∥ ∥ y ∥,
∥ T ∗y ∥ ≤ c ∥ y ∥ .

Definition 7. T ∗ : H2 → H1 is a continuous linear operator and is called the adjoint
of T .

If T = T ∗ (defined on H = H1 = H2), then the operator is called self-adjoint. (Note
that the projections in the Main Theorem are self adjoint.)

An operator U : H → H is called unitary in case UU∗ = I. A unitary operator
satisfies ⟨Ux,Uy⟩ = ⟨x, y⟩, i.e., U preserves the inner product of elements.

Theorem 8. (0) For a subspace M ⊆ H, (M⊥)⊥ = M, where M is the closure of M.
For a continuous linear operator T : H1 → H2:

(1) Ker(T ) = Range(T ∗)⊥

(2) Range(T ∗) = Ker(T )⊥

(3) T ∗∗ = T

(4) Ker(T ∗) = Range(T )⊥ = Range(T )
⊥
.

Proof. (0): Recall that M⊥ = {x ∈ H : ⟨x,m⟩ = 0∀m ∈ M}.

Clearly M ⊆ (M⊥)⊥ and since (M⊥)⊥ is closed M ⊆ (M⊥)⊥.

For the other side, first note that M⊥ = (M)⊥ since

∀b ∈ M, ∃xn ∈ M, n = 1, 2, · · · such that xn → b.

So for a ∈ M⊥, ⟨a, xn⟩ → ⟨a, b⟩ by continuity. Hence ⟨a, b⟩ = 0.

Let α ∈ (M⊥)⊥ = (M)⊥⊥. By the Main Theorem α = α1 + α2, with α1 ∈ M,
α2 ∈ (M)⊥. So:

0 = ⟨α, α2⟩ = ⟨α1, α2⟩+ ∥ α2 ∥
2=∥ α2 ∥

2 ⇒ α = α1 ∈ M.

(1): ξ ∈ Ker(T ): ⟨ξ,T ∗a⟩ = ⟨Tξ, a⟩ = 0⇒ Ker(T ) ⊆ R(T ∗)⊥.

ξ ∈ R(T ∗)⊥ : ⟨Tξ, η⟩ = ⟨ξ,T ∗η⟩ = 0∀n ∴ ξ ∈ Ker(T ).

(3): ⟨T ∗∗x, y⟩ = ⟨y, (T ∗)∗x⟩ = ⟨T ∗y, x⟩ = ⟨y,T x⟩ = ⟨T x, y⟩ ⇒ T ∗∗x = T x∀x. □
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2.4 DIGRESSION: Existence of Solutions
We will look at the equation Tu = f for T : H1 → H2 continuous linear operator and
f , a given element of H2.

Given T,H1,H2 and f ∈ H2 as above, consider the condition:

∃C > 0 : | ⟨ f , x⟩ |≤ C ∥ T ∗x ∥ ∀x ∈ H2 (**)

If the equation Tu = f has a solution, then for any x ∈ H2:

| ⟨ f , x⟩ |=| ⟨Tu, x⟩ |=| ⟨u,T ∗x⟩ |≤∥ u ∥ ∥ T ∗x ∥ .

So (**) is satisfied with C ≥∥ u ∥.

On the other hand, if (**) is satisfied then on R(T ∗) define an operator S via
S (T ∗v) := ⟨v, f ⟩. This assignment is well-defined since if T ∗v1 = T ∗v2 then (**)
implies

| ⟨ f , v1⟩ − ⟨ f , v2⟩ |≤ C ∥ T ∗v1 − T ∗v2 ∥= 0 ⇒ ⟨v1, f ⟩ = ⟨v2, f ⟩.

Moreover by (**) we have | S (T ∗v) |≤ C ∥ T ∗v ∥, so S is continuous and linear on
R(T ∗).

As a general rule, S extends to R(T ∗) by defining the extension for a given x, by

S (x) := lim
n→∞

S (xn)

for some sequence {xn} ∈ R(T ∗) that converges to x.
To see that this procedure does not depend upon the sequence chosen, suppose

x′n → x is another sequence in R(T ∗). Then since

∥ S (xn − x′n) ∥≤ C ∥ xn − x′n ∥,

{S (xn)} and {S (x′n)} converges to the same point in C, and since

| S (xn) − S (xm) |≤ C ∥ xn − xm ∥ ∀n,m,

plainly S (xn) converges.
Moreover ∀n,

| S (xn) |≤ C ∥ xn ∥ ⇒ ∥ S x ∥≤ C ∥ x ∥ .

That is, S is continuous on R(T ∗).
Let P be the projection on R(T ∗) and consider S ◦ P(x). This is a continuous linear

function from H1 into C with

| S ◦ P(x) |≤ C ∥ P(x) ∥≤ C ∥ x ∥ .

So by Riesz Representation Theorem ∃u ∈ H2 that satisfies

S ◦ P(x) = ⟨x, u⟩ ∀x ∈ H1.

11



In particular for x = T ∗v we have

⟨v, f ⟩ = ⟨T ∗v, u⟩ = ⟨v,Tu⟩, or
⟨ f , v⟩ = ⟨Tu, v⟩, ∀v ⇒ f = Tu

Moreover we have an estimate on u, namely ∥ u ∥≤ C.
To summarize:

For a given f ∈ H2 the equation T (u) = f has a solution if and only if (**) holds.

In practice, sometimes explicit knowledge of T ∗ allows one to get a stronger esti-
mate:

∃C > 0 : ∥ x ∥≤ C ∥ T ∗x ∥ ∀x ∈ R(T ). (***)

This yields for f ∈ R(T ) and x ∈ R(T ):

| ⟨ f , x⟩ |≤∥ f ∥ ∥ x ∥≤ C ∥ f ∥ ∥ T ∗x ∥,

which implies

∀ f ∈ R(T ) ∃u with Tu = f and ∥ u ∥≤ C ∥ f ∥ .

In particular, this implies that R(T ) is closed.

2.5 Orthonormal Bases
We will close this part by generalizing a special feature of the space ℓ2 to a large class
of Hilbert spaces.

Recall that:

ℓ2 := {(ζn) ∈ CN :
∞∑

n=1

| ζn |
2< ∞},

with inner product

⟨ζ, η⟩ :=
∞∑

n=1

ζnηn, ζ = (ζn), η = (ηn).

Note that ℓ2 = span{en}, the closure of all finite linear combinations of en’s, where

en := (0, · · · , 0, 1, 0, · · · ),

since for any ζ = (ζn) ∈ ℓ2,

∥ ζ −

N∑
n=1

ζnen ∥=

∞∑
n=N+1

| ζn |
2→ 0 as N → ∞.

We will call a Hilbert space H separable in case there exists a countable set of
elements such that the closure of the span of these elements is H.
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Note that in ℓ2 every element ζ can be expressed as:

ζ =

∞∑
n=1

⟨ζn, en⟩en,

the series converging in ℓ2.

Now, if H is a separable Hilbert space with span{xn} = H, by Gram-Schmidt
algorithm we can get another sequence (yn) with span{yn} = H and ⟨yn, ym⟩ = δn,m.

For a given x ∈ H form:

xN :=
N∑

n=1

⟨x, yn⟩yn, N ∈ N.

Since ⟨x − xN , yi⟩ = 0 for i = 1, · · · ,N;

x − xN ∈ span{y1, · · · , yN}
⊥ = span{y1, · · · , yN}

⊥
.

Then x = (x − xN) + xN is the unique decomposition of x given by the Main Theorem.

In particular:

⟨x − xN + xN , x − xN + xN⟩ =∥ x ∥2=∥ x − xN ∥
2 + ∥ xN ∥

2 .

So we can draw two conclusions from this and the Main Theorem:

1) ∥ x − xN ∥
2= distance of x to span{x1, · · · , xN} → 0 as N → ∞ by our assump-

tion,

2) ∥ xN ∥
2=
∑N

n=1 | ⟨x, yn⟩ |
2≤∥ x ∥2, so {⟨x, yn⟩} ∈ ℓ2.

It follows that every x ∈ H can be expanded in H as:

x =
∞∑

n=1

⟨x, yn⟩yn with {⟨x, yn⟩} ∈ ℓ2.

Conversely, if {λn} is in ℓ2, the series
∑∞

n=1 λnyn converges in H, since (if N < M)∣∣∣∣∣∣∣∣∣∣ N∑
n=1

λnyn −

M∑
n=1

λnyn

∣∣∣∣∣∣∣∣∣∣2 = ∣∣∣∣∣∣∣∣∣∣ M∑
n=N+1

λnyn

∣∣∣∣∣∣∣∣∣∣2 = M∑
n=N+1

| λn |
2→ 0 as N,M → ∞.

So
∑N

n=1 λnyn converges to a point ζ in H. In particular, for each ys,

〈 N∑
n=1

λnyn, ys

〉
= λs if N ≥ s, so ⟨ζ, ys⟩ = λs.

So ζ =
∑∞

n=1 λnyn and λn = ⟨ζ, yn⟩, n = 1, · · · .
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To summarize
For a given separable H, ∃{yn}

∞
n=1 with ⟨yn, ym⟩ = δn,m such that every x ∈ H can be

expanded uniquely in a series

x =
∞∑

n=1

λnyn, {λn}n ∈ ℓ2, λn = ⟨x, yn⟩, n = 1, 2, · · · .

Such a sequence {yn} will be referred as an orthonormal basis.

Continuing our discussion, it follows that there is an operator T : H → ℓ2, T x :=
{⟨x, yn⟩}n that is one to one and onto. Moreover, for f , g ∈ H:

⟨ f , g⟩ = lim
N→∞

〈 N∑
n=1

⟨ f , yn⟩yn, g
〉
= lim

N→∞

N∑
n=1

⟨ f , yn⟩⟨g, yn⟩ =

∞∑
n=1

⟨ f , yn⟩⟨g, yn⟩.

The last equality is valid since if N < M

∣∣∣∣ N∑
n=1

⟨ f , yn⟩⟨g, yn⟩ −

M∑
n=1

⟨ f , yn⟩⟨g, yn⟩

∣∣∣∣ ≤ ∣∣∣∣ M∑
n=N+1

⟨ f , yn⟩⟨g, yn⟩

∣∣∣∣
≤
( M∑

n=N+1

| ⟨ f , yn⟩ |
1/2
)2( M∑

n=N+1

| ⟨g, yn⟩ |
2
)1/2

→ 0 as N,M → ∞.

Therefore

∥ T (h) ∥=
( ∞∑

n=1

| ⟨h, yn⟩ |
2
)1/2
=∥ h ∥ .

More generally;
⟨T (h),T (g)⟩ = ⟨ f , g⟩.

That is, T is unitary isomorphism from H onto ℓ2.

The moral of the story is
In a separable Hilbert space H, one can introduce "coordinates" in ℓ2 just like in Cn

one introduces x↔ (x1, · · · , xn), xn ∈ C and work with these coordinates.
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2.6 Completion
Let (X, ⟨ , ⟩) be an inner product space that is not complete. This inner product induces
a metric on X as we have seen earlier via,

∥ x − y ∥2:= ⟨x − y, x − y⟩.

Let us call a function f : X → C anti-linear in case f (x + λy) = f (x) + λ f (y) for every
x, y ∈ X and λ ∈ C.

Consider

X∗ = { f : X → C : f is anti-linear and continuous}
= { f : X → C : f is anti-linear and ∃C > 0 s.t. | f (x) |≤ C ∥ x ∥}.

Note that X∗ is a subspace of the vector space of complex valued functions on X.
We can identify elements of X with a subset of X∗ via x 7→ fx, fx(y) := ⟨x, y⟩. Note

that this is a one to one and linear assignment, i.e.,

fx1 = fx2 =⇒ ⟨y, x1 − x2⟩ = 0 ∀y =⇒ x1 = x2,

and
fx+ty = fx + t fy for x, y ∈ X, t ∈ C.

Moreover
sup
∥y∥≤1

| fx(y) |=∥ x ∥ ∀x ∈ X.

Choose a Cauchy sequence {xn} in X, then since

| fxn (t) − fxm (t) |=| ⟨t, xn − xm⟩ |≤∥ xn − xm ∥ ∥ t ∥ ∀t ∈ X,

fxn (t) converges to a point in C as n→ ∞. Call this point f (t).

The function t 7→ f (t) is clearly anti-linear since each fxn is, n = 1, 2, · · · .
Moreover;

| f (t) |≤ lim
n→∞
| fxn (t) |≤ lim

n→∞
| ⟨xn, t⟩ |≤∥ t ∥ ∥ xn ∥ .

Since ∀ε > 0∃N : ∥ xn − xm ∥≤ ε if n,m ≥ N,

∥ xn ∥≤∥ xn − xN ∥ + ∥ xN ∥≤ ε+ ∥ xN ∥= C.

So f ∈ X∗.

Note that a similar argument presented above shows that X∗ with the metric

d( f , g) = sup
∥y∥≤1

| f (y) − g(y) |

is complete, that is, every Cauchy sequence in X∗ converges.

Note that ∥ x ∥= d(0, fx).
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Now consider the closure of X in X∗. For an f ∈ X∗, define

⟨ f , fx⟩ := f (x), x ∈ X.

Certainly, it is linear in f and anti-linear in fx’s, that is ⟨ f , c fx⟩ = c⟨ f , fx⟩ for c ∈ C.
For f = fy, ⟨ fy, fx⟩ = fy(x) = ⟨y, x⟩.

For a g ∈ X, choose sequences {xn} and {yn} such that fxn → g and fyn → g in X∗.
Then for f ∈ X there exist a C > 0 such that,

| ⟨ f , fxn − fyn⟩ | =| ⟨ f , fxn⟩ − ⟨ f , fyn⟩ |=| f (xn) − f (yn) |
=| f (xn − yn) |≤ C ∥ xn − yn ∥= Cd( fxn , fyn ),

and

| ⟨ f , fxn⟩ − ⟨ f , fxm⟩ | =| ⟨ f , fxn − fxm⟩ |=| f (xn − xm) |
≤ C ∥ xn − xm ∥≤ Cd( fxn , fxm ).

Hence we can define

⟨ f , g⟩ := lim
n→∞
⟨ f , fxn⟩, for fxn → g,

and this definition does not depend upon the sequence fxn chosen.
Clearly this assignment is sesquilinear.

Note that ⟨ f , f ⟩ = limn→∞⟨ f , fxn⟩ for a sequence fxn → f in X∗:

| fxn (xn) − f (xn) | ≤∥ xn ∥ d( fxn , f ) = d(0, fxn )d( fxn , f )

≤ d( fxn , f )2 + d(0, f )d( fxn , f ).

So limn→∞ | fxn (xn) − f (xn) |= 0. Observe:

f (xn) = − fxn (xn) + f (xn) + fxn (xn) = f (xn) − fxn (xn) + ⟨xn, xn⟩.

So ⟨ f , f ⟩ = limn→∞ f (xn) ≥ 0 and is zero if ⟨xn, xn⟩ → 0, which in view of

| f (y) |= lim
n→∞
| fxn (y) |= lim

n→∞
| ⟨y, xn⟩ |≤∥ y ∥ ∥ xn ∥,

implies f ≡ 0.
It follows that ⟨ , ⟩ is an inner product on X.

Moreover, if { fn} is a Cauchy sequence in X with respect to the topology coming
from this inner product, since for x ∈ X:

| fn(x) − fm(x) | ≤| ⟨ fn − fm, fx⟩ |≤| ⟨ fn − fm, fn − fm⟩ |1/2| ⟨ fx, fx⟩ |
1/2

≤ ⟨ fn − fm, fn − fm⟩1/2⟨x, x⟩1/2,

d( fn, fm) = sup
∥x∥≤1

| fn − fm |≤ ⟨ fn − fm, fn − fm⟩1/2,
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{ fn} is a Cauchy sequence in X with respect to the original topology of X.

Since X is complete fn → f in this topology.

On the other hand, for a given g ∈ X, choosing fxk → g in X∗ we have:

| ⟨g, g⟩ | = lim
k→∞
| ⟨g, fxk⟩ |= lim

k→∞
| g(xk) |

≤ lim
k→∞

d(0, g) ∥ xk ∥= lim
k→∞

d(0, g) d(0, fxk ) = d(0, g)2.

So
| ⟨ fn − fm, fn − fm⟩ |≤ d( fn, f )2.

This implies that fn → f in (X, ⟨ , ⟩).
So (X, ⟨ , ⟩) is a Hilbert space, it contains (X, ⟨ , ⟩), ⟨ , ⟩ induces the inner product on

X, moreover, the closure of X is the full space X.
If (H, ⟨⟨ , ⟩⟩) is another Hilbert space enjoining the above mentioned properties of

(X, ⟨ , ⟩), then the identity operator on (X, ⟨ , ⟩) plainly extends to a 1-1, onto unitary
operator from X to H.

The unique Hilbert space satisfying the above mentioned properties is called the
completion of (X, ⟨ , ⟩).

Now, going back to our construction, if (X, ⟨ , ⟩) is a vector space of functions on
a set T where point evaluations are continuous, then for fx, set fx(t) := x(t) and if
fxn → f in (X, ⟨ , ⟩), then we propose to set f (t) = limn→∞ xn(t).

Since
| xn(t) − xm(t) |≤ C ∥ xn − xm ∥= Cd( fxn , fxm ),

xn(t) is Cauchy, so it converges.

If {x̃n} is another sequence such that fx̃n converges to f , the argument above shows
that xn(t) − x̃n(t) → 0; that is, fxn (t) − fx̃n (t) → 0, ∀t ∈ T . Therefore the assignment is
well defined.

But does is characterize f completely? That is, if f (t) ≡ 0 ∀t, does this mean that
f ≡ 0?

For this, we need an extra condition.

If {xn} is Cauchy in X and lim
n→∞

xn(t) = 0∀t ∈ T , then ∥ x ∥→ 0. (*)

Condition (*) will give us the property we need.
On the other hand if f is completely determined by T then for any Cauchy sequence

{xn} ∈ X, xn → x in the closure, xn(t)→ 0∀t =⇒ x(t) ≡ 0 =⇒ ∥ xn ∥→ 0.

So condition (*) is what we seek.

To Summarize
Given an inner product space (X0, ⟨ , ⟩0), there exists a unique Hilbert space (X, ⟨ , ⟩)
containing a copy of X0 in the sense that ∃ı : X0 ↪→ X one to one linear map that
satisfies
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• ⟨ı(x), ı(y)⟩ = ⟨x, y⟩0, and

• ı(X0) = X.

If (X0, ⟨ , ⟩0) is a function space on T with continuous point evaluations, there exists
a Hilbert function space (X1, ⟨ , ⟩1) on T with continuous point evaluations and satisfy-
ing the above conditions if and only if

{xn}n Cauchy in X0, xn(t)→ 0∀t ∈ T =⇒ ∥ xn ∥= ⟨xn, xn⟩
1/2
0 → 0 as n→ ∞ (*)

Note that
Since we were interested in the existence of completion of an inner product X, we did
not care about the identification X in X∗.

Actually, one can show that X is in fact X∗ as follows:

Take σ ∈ X∗. Then σ is a continuous linear functional on X, hence can be extended
to a continuous linear functional on X. Using the notation of the proof, Riesz Repre-
sentation Theorem applied to the Hilbert space (X, ⟨ , ⟩) gives an element η ∈ X such
that:

σ(x) = ⟨ fx, η⟩ = ⟨η, fx⟩ = η(x) =⇒ σ ∈ X.

Moreover, the proof also shows that the norm ∥ . ∥ on X∗ is actually a Hilbertian norm,
that is, it comes from an inner product on X∗.

3 Reproducing Kernel Hilbert Spaces

3.1 Continuous Point Evaluations
In our previous discussions we have represented, from time to time, a given Hilbert
space as a space of functions on a set T with the property that point evaluations are
continuous. Namely, we have associated elements of a given Hilbert space (H, ⟨ , ⟩) to
functions on the set H via the rule H ∋ x ↔ x̂(h) := ⟨h, x⟩, i.e., as continuous linear
functions from H into C in view of Riesz Representation Theorem. Transporting the
inner product to this space of functions, i.e., setting ⟨x̂, ŷ⟩ := ⟨x, y⟩ ∀x, y ∈ H, one can
view H as a Hilbert space of functions such that point evaluations are continuous.

The last assertion follows immediately from:

| x̂(t) |=| ⟨t, x⟩ |≤∥ x ∥ ∥ t ∥, ∀x, t ∈ H.

However, the above realization is not unique. For example, one can also view Rn, or
more generally ℓ2 as a space of functions on f : N → R with

∑∞
n=1 | f (n) |2< ∞, with

the inner product:

⟨ f , g⟩ =
∞∑

n=1

f (n)g(n),
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via ℓ2 ∋ {an} = x↔ fx : fx(n) = an ∀n.

Clearly;

| f (n) |≤
( ∞∑

k=1

| f (k) |2
)1/2

,

so indeed point evaluations are continuous on this function space.
Naturally, it is desirable to represent a given Hilbert space as a function space on a

small set.

On the other hand, some important Hilbert spaces that occur in nature are given as
function spaces with continuous point evaluations.

Example 1
Let X be the vector space of all infinitely differentiable real valued functions which
vanish outside of a finite interval and let

⟨ f , g⟩ :=
∫ ∞
−∞

( f g)(t)dt +
∫ ∞
−∞

( f ′g′)(t)dt.

Then (X, ⟨ , ⟩) becomes an inner product space.

For a point t0 ∈ R and f ∈ X, by the Fundamental Theorem of Calculus,

| f (t0) |2 =
∣∣∣∣∫ t0

−∞

( f 2)′dt
∣∣∣∣ = ∣∣∣∣2∫ t0

−∞

f ′ f dt
∣∣∣∣

≤ 2
( ∫ ∞
−∞

| f ′ |2 dt
)1/2( ∫ ∞

−∞

| f |2 dt
)1/2

≤

∫ ∞
−∞

| f ′ |2 dt +
∫ ∞
−∞

| f |2 dt.

Note that, we have used the inequality 2AB ≤ A2 + B2 for positive real numbers A and
B.

So, | f (t0) |≤ ⟨ f , f ⟩1/2, hence point evaluations are continuous on X.

We would like to draw attention to two points in this context:

1) The first term in the above inner product is itself an inner product on X, but the
point evaluations are not necessarily continuous on this inner product space, as
we have observed in a previous example.

2) (X, ⟨ , ⟩) is not complete. However, it can be shown that it satisfies the condition
(*) for having a completion consisting of certain continuous functions on R with
continuous point evaluations.

Hence, the completion of C∞c (R), W(R), is a Hilbert space of functions on R with
continuous point evaluations.

As a matter of fact, W(R) consists of continuous functions f on R, differentiable
at "most" of the points of R and

∫ ∞
−∞
| f (t) |2 dt < ∞,

∫ ∞
−∞
| f ′(t) |2 dt < ∞ with a

"reasonable" interpretation of the second integral.
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Example 2
Let H2(D) denote the vector space of all analytic functions on the unit disc D ⊆ C
whose Taylor coefficients are in ℓ2. In other words,

H2(D) := { f (z) =
∞∑

n=1

cnzn on D with
∞∑

n=1

| cn |
2< ∞}.

On H2(D) we put the inner product:

⟨ f , g⟩ :=
∞∑

n=1

cndn, f (z) =
∞∑

n=1

cnzn, g(z) =
∞∑

n=1

dnzn ∈ H2(D).

Clearly ⟨ , ⟩ defines an inner product on H2(D) and it makes it a Hilbert space, basically
because ℓ2 is complete.

Note that, if a sequence { fn}n, fn =
∑∞

k=1 an
kzk is Cauchy, then xn := {an

k}
∞
k=1, n =

1, 2, · · · is a Cauchy sequence in ℓ2, so converges to some x = {ak}
∞
k=1 ∈ ℓ2.

Now, f (z) =
∑∞

k=1 akzn defines a function on D since on each subdisc ∆r, where
∆r := {z :| z |< r}, r < 1:

∞∑
k=1

| ak | | zn |≤

n∑
k=1

| ak | rn ≤
( ∞∑

k=1

| ak |
2
)1/2( 1

1 − r2

)1/2
,

and this function is analytic since it is the uniform limit of analytic polynomials
∑N

k=1 akzn

on each subdisc ∆r, r < 1.

For a w ∈ D and f ∈ H2(D),

| f (w) |≤
∞∑

n=1

| an | | w |n≤
( 1
1− | w |2

)1/2
∥ f ∥ .

So H2(D) is a Hilbert space of functions on the unit disc D with continuous point
evaluations.

Example 3
Suppose T is any set (could be a set of humans for example), and suppose we somehow
fabricate a map ϕ from T to a Hilbert space (H, ⟨ , ⟩) not necessarily a RKHS.

Elaborating on the comment above, as an example, one can use the assignment of
their weight/height/birth year to a human in the set T , so ϕ from T to R3 with the usual
inner product, becomes a function.

This map induces a RKHS of functions on T by first considering:

H := spant∈Tϕ(t) ⊂ H,
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and forming:
h̃(t) := ⟨h, ϕ(t)⟩, for h ∈ H ,

with the inner product:
⟨h̃1, h̃2⟩ := ⟨h1, h2⟩.

That is, we think of elements ofH as functions on H and restrict them to the image
of ϕ. Note that h̃(t) ≡ 0 implies h ≡ 0 since h ∈ H .

Another way of visualizing this example is by forming the function space

F = { f : T → C | ∃h ∈ H : f (t) = ⟨h, ϕ(t)⟩ ∀t ∈ T }

and putting on F the norm

∥ f ∥:= inf
h∈H, f (t)=⟨h,ϕ(t)⟩

∥ h ∥,

where the last norm is the norm in the Hilbert space H.

Note that with the notation above,

h ∈ H⊥ ⇐⇒ ⟨h, ϕ(t)⟩ = 0∀t ∈ T.

It follows that for every f ∈ F there exits a unique h f ∈ H such that f (t) = ⟨h f , ϕ(t)⟩
∀t ∈ T , and if f (t) = ⟨h, ϕ(t)⟩ ∀t ∈ T, then h = h1 + h f with h1 ∈ H

⊥ so ∥ h ∥≥∥ h f ∥.

It follows that ∥ f ∥2= ⟨h f , h f ⟩, hence the norm on F is coming from an inner
product in view of the polarization identity and the assignment f ←→ h f is a unitary
isomorphism between the Hilbert spacesH and F .

3.2 Kernels
In the Hilbert spaces (H, ⟨ , ⟩) of functions, on a set T , for which point evaluations are
continuous, like the examples given above, H possesses a collection of distinguished
elements {kt}t∈T defined by:

⟨x, kt⟩ := x(t), ∀x ∈ H. (4)

Note that such vectors exist in view of Riesz Representation Theorem since point eval-
uations are continuous and are uniquely determined by the given point of T .

One can think of points h ∈ H as indexed by elements of T as {x(t)}t∈T . The
importance of the elements kt, t ∈ T is that they give "coordinates" {x(t)}t∈T of an
x ∈ H by using the inner product on H via equality (4).

Hence, for example, if one theoretically knows that a sequence {xn} converges, the
knowledge of these distinguished vectors will allow us to compute the "coordinates" of
the limit vector x via x(t) = lim⟨x, kt⟩, ∀t ∈ T.
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Definition 9. Let (H, ⟨ , ⟩) be a Hilbert space of functions on T such that the point
evaluations are continuous. Let {kt}t∈T be the vectors of H defined as above. One calls
the scalar valued function defined on T × T via:

K(t, s) := ⟨ks, kt⟩ = ks(t) = kt(s) = ⟨kt, ks⟩,

the kernel of (H, ⟨ , ⟩).

This kernel is reproducing in the sense that it captures the "coordinates" of x ∈ H
via:

x(s) = ⟨x, ks⟩ = ⟨x,K(s, .)⟩, ∀s,

since the function t 7→ K(s, t) is just an element ks in H.

3.3 Properties of Kernel Functions
Theorem 10. Let K, defined on T × T as above, be the kernel function of a Hilbert
space (H, ⟨ , ⟩). We have:

1. K(t, s) = K(s, t), ∀s, t ∈ T,

2. For (λ1, · · · , λN) ∈ CN ;
∑

i, j λiλ jK(ti, t j) ≥ 0, ∀N ∈ N, (t1, · · · , tN) ∈ T N .

Proof. The first property is clear.

To see the second, choose (λ1, · · · , λN) ∈ CN and (t1, · · · , tN) ∈ T N ;

0 ≤
〈 N∑

i=1

λiki,

N∑
i=1

λiki

〉
=

N∑
i, j=1

λiλ j⟨ki, k j⟩ =

N∑
i, j=1

λiλ jK(ti, t j).

□

The second condition is usually referred to as positiveness of K since it is just the
condition that the matrix

(
K(ti, t j)

)N
i, j=1, N ∈ N is a positive matrix.

3.4 Reproducing Kernels
It is time to give such Hilbert function spaces a name:

Definition 11. A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space
(H, ⟨ , ⟩) of functions on a set T such that all the point evaluations are continuous.

In the definition we have suppressed the kernel function, however we will see later
that this scalar valued function completely determines the Hilbert space. We revisit the
examples given above.

Example 1*
Let

X(s, t) = e−|t−s| =

{
e−t+s if t > s, s, t ∈ R.
et−s if t ≤ s
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Observe that
∂X(s, t)
∂t

=

{
−e−t+s if t > s, s, t ∈ R.

et−s if t < s

So Xs(t) := X(s, t) is differentiable except at the point s and
∫ ∞
−∞

∣∣∣∣ ∂X∂t (t)
∣∣∣∣2dt is finite if

we interpret the integral as:∫ ∞
−∞

∣∣∣∣∂Xs

∂t
(t)
∣∣∣∣2dt =

∫ s

−∞

∣∣∣∣∂Xs

∂t
(t)
∣∣∣∣2dt +

∫ ∞
s

∣∣∣∣∂Xs

∂t
(t)
∣∣∣∣2dt.

It follows that Xs ∈ W(R) in view of our previous discussion.

For f ∈ C∞c (R), we compute:∫ ∞
−∞

f (t)Xs(t)dt =
∫ s

−∞

f (t)et−sdt +
∫ ∞

s
f (t)e−t+sdt∫ ∞

−∞

f ′(t)X′s(t)dt =
∫ s

−∞

f ′(t)et−sdt −
∫ ∞

s
f ′(t)e−t+sdt

= −

∫ s

−∞

f (t)et−sdt + f (s) −
( ∫ ∞

s
f (t)e−t+sdt − f (s)

)
= −

∫ s

−∞

f (t)et−sdt −
∫ ∞

s
f (t)e−t+sdt + 2 f (s),

So ∫ ∞
−∞

f (t)Xs(t)dt +
∫ ∞
−∞

f ′(t)X′s(t)dt = 2 f (s).

So ⟨ f , 1
2Xs⟩ = f (s) for f ∈ C∞c (R), hence for f ∈ W; since C∞c (R) = W and point

evaluations are continuous on W.

Thus the kernel on W is the function:

K : R2 → R K(s, t) = ⟨
1
2
Xt,

1
2
Xs⟩ =

1
4

e−|t−s|.

Before we proceed further, a simple observation is in order.

Suppose H ⊆ CT is a RKHS with kernel K that is separable, i.e., it contains count-
able elements fn, n = 1, 2, · · · such that span{ fn} = H. Then any orthonormal basis of
H is countable.

Suppose {en} is any such orthonormal basis for H, then ∀t ∈ T consider the expan-
sion in H,

kt(s) =
∞∑

n=1

⟨kt, en⟩en(s) =
∞∑

n=1

en(t)en = lim
N→∞

N∑
n=1

en(t)en in H.
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Since point evaluations are continuous on H,

kt(s) = lim
N→∞
kt

( N∑
n=1

en(t)en(s)
)
= lim

N→∞

N∑
n=1

en(s)en(t)

=

∞∑
n=1

en(s)en(t),

where the last convergence is in C.

Hence the kernel of H can be computed as

K(t, s) = kt(s) =
∞∑

n=1

en(s)en(t).

Since the right hand side of the equation depends only on H, any choice of orthonormal
basis can be used to compute the kernel of H.

Example 2*
Let f be an analytic function on the unit disc and consider its Taylor series expansion:

f =
∞∑

n=0

cnzn =

∞∑
n=0

⟨ f , zn⟩zn.

The last expression in the right hand side comes directly from the definition of the inner
product on H2(D). Moreover,∣∣∣∣∣∣∣∣∣∣ N∑

n=1

⟨ f , zn⟩zn − f
∣∣∣∣∣∣∣∣∣∣2 =∑

n>N

| cn |
2→ 0 as N → ∞.

So the series
∑∞

n=1⟨ f , z
n⟩zn not only converges uniformly on each disc ∆r = {z :| z |< r},

but also converges to f in H2(D), and ⟨zn, zm⟩ = δn,m, ∀n,m ∈ N.

It follows that {zn}∞n=0 is an orthonormal basis in H2(D).

So the kernel of H2(D) is:

K(ζ, η) =
∞∑

n=0

zn(η)zn(ζ) =
∞∑

n=0

(ηζ)n =
1

1 − ηζ
.

Now we wish to relate this kernel function, obtained by functional analytic consid-
erations to a well known formula of Complex Analysis.

Let f , g be analytic functions on an open disc containing D := {z :| z |≤ 1}. Say
f (z) =

∑∞
n=0 cnzn and g(z) =

∑∞
n=0 dnzn. Since:

f g(eiθ) =
∞∑

n,m=0

cndmei(n−m)θ
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on the unit circle and since the series converge uniformly on the unit circle, we have∫ 2π

0
f (eiθ)g(eiθ)dθ = 2π

∞∑
n=0

cndn.

In particular, such functions are in H2(D) and the above expression represents the inner
product of two such functions as an integral.

Note that for any z ∈ D,

kz(w) =
1

1 − wz
is an analytic function near the closed unit disc.

Therefore for an f that is analytic near the closed unit disc and a point z0 = reiψ in the
unit disc,

f (z0) = ⟨ f , kz0 ⟩ =
1

2π

∫ 2π

0
f (eiθ)kz0 (eiθ)dθ =

1
2π

∫ 2π

0
f (eiθ)

dθ
1 − z0e−iθ

=
1

2π

∫ 2π

0

f (eiθ)
1 − z0e−iθ ·

ieiθdθ
ieiθ (take w = eiθ, dw = ieiθdθ)

=
1

2πi

∫
Γ

f (w)
w − z0

dw,

where Γ = ∂D.
This formula is the classical Cauchy Integral Formula of Complex Analysis.

Example 3*
In this example, since for h ∈ H, h̃(t) = ⟨h, ϕ(t)⟩ = ⟨h̃, ϕ̃(t)⟩, the kernel function is
plainly

K(s, t) = kt(s) = ⟨ϕ̃(t), ϕ̃(s)⟩ = ⟨ϕ(t), ϕ(s)⟩.

Note that the distance between the points ϕ(t) and ϕ(s) for t, s ∈ T can be computed by
using just the kernel function as;

d(ϕ(t), ϕ(s)) = ⟨ϕ(t) − ϕ(s), ϕ(t) − ϕ(s)⟩
= ⟨ϕ(t), ϕ(t)⟩ − 2Re⟨ϕ(t), ϕ(s)⟩ + ⟨ϕ(s), ϕ(s)⟩
= K(t, t) − 2ReK(t, s) + K(s, s), t, s ∈ T.

3.5 Yet Another Example
We would like to close this part with an illustration of how the abstract ideas developed
in this presentation might be useful in handling some practical problems.

Suppose you seek a function f in a RKHS H of real valued functions on a set T
with smallest norm satisfying f (ti) = ai, i = 1, · · · , n, for some points t1, · · · , tn ∈ T
and a1, · · · , an ∈ R (outcomes of some experiment?).
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If it is not apriori clear that such a function exits, lets say you might be content
to find a function in H that comes ”close” to taking the given values at the specified
points.

To put things in mathematical perspective, define:

T : H → Rn via T ( f ) := ( f (t1), · · · , f (tn))

and transform the problem to the question:

Question
Find a function f0 ∈ H with smallest norm that satisfies:

∥ T ( f0) − a⃗ ∥2= inf
f∈H
∥ T ( f ) − a⃗ ∥2, a⃗ = (a1, · · · , an) ∈ Rn,

where ∥ . ∥ is the usual norm on Rn.

Certainly, T : H → Rn is linear and continuous since point evaluations on H are
continuous. T (H) = Σ is a subspace of Rn, in particular, it is closed in Rn. Hence there
is a unique point in Σ that is closest to the point a⃗ (that is the element of smallest norm
in the closed convex subset a⃗+Σ). This point is P(a⃗), where P is the projection onto Σ.

However, there may be many elements of H that are mapped to this point; in fact,
if f is such an element, all the others form the set f + Ker(T ). Since this set is a
closed (due to T being continuous), and also a convex set in H; it has a unique point
with the least norm. Hence our problem has a unique solution. This solution u is
in (Ker(T ))⊥ by the general theory, otherwise the decomposition of u into KerT and
(KerT )⊥ produces an element of f + KerT that has norm less than u. Now:

T ( f ) = ( f (t1), · · · , f (tn)) = (⟨ f , kt1⟩, · · · , ⟨ f , ktn⟩),

so for a ζ⃗ = (ζ1, · · · , ζn) and f ∈ H, we compute using the inner product in Rn;

⟨ζ⃗,T ( f )⟩ =
n∑

i=1

ζi⟨ f , kti⟩

=
〈

f ,
n∑

i=1

ζikti

〉
∀ f ∈ H

= ⟨T ∗(ζ⃗), f ⟩,

where the last two inner products are in H and as usual kti (·) = K(·, ti) ∈ H.

Hence we get the formula:

T ∗(ζ⃗) =
n∑

i=1

ζikti

Since we are looking at the solution of the equation:

Tu = P(a⃗); u ∈ (KerT )⊥ = R(T ∗),
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the above observation reduces our problem to finite dimensional linear algebra since
R(T ∗) is finite dimensional and is spanned by kt1 , · · · , ktn .

In other words, our problem reduces to finding c1, · · · , cn of real numbers such that:

P(a⃗) = T
( n∑

i=1

cikti
)
=

n∑
i=1

ciT (kti ) =
n∑

i=1

ci(⟨kti , kt1⟩, · · · , ⟨kti , ktn⟩) (5)

( n∑
i=1

ci⟨kti , kt1⟩, · · · ,

n∑
i=1

ci⟨kti , ktn⟩
)
= A
 c1

...
cn

 ,
with A = {K(ti, j )}ni, j=1,

where K is the kernel of the Hilbert space H.

However, the right hand side of the equation involves the projection of a⃗ onto Σ,
which is not readily computable.

To get around this, apply T ∗ to both sides of Equation (5) to get:

n∑
i=1

aikti = T ∗(a⃗) = T ∗P(a⃗) =
n∑

i=1

(Ac⃗)ikti .

So solution to the equation
A(⃗c) = a⃗

will be the solution to our problem.

In the case A = {K(ti, t j)} is invertible, one immediately computes the solution.

Note that A is invertible in case the positive function K is positive definite; that is,
for every (λ1, · · · , λk) ∈ Rk and x1, · · · , xk ∈ H,

k∑
i, j=1

λiλ jK(xi, x j) ≥ 0 and
k∑

i, j=1

λiλ jK(xi, x j) = 0⇐⇒ (λ1, · · · , λk) = 0⃗.

Note that the solution to this problem in case the kernel is positive definite involves
only the kernel function of the Hilbert space.

Concluding Remarks
In the course of this presentation we have associated to a reproducing kernel Hilbert
space H of functions on T , a positive function K : T × T → R, which we called the
kernel of H, and observed that some of the problems involving H can be solved by the
use of just the kernel and nothing else.

The coming lectures will make this statement more precise. You will see that a
positive function on K : T × T → C for a set K defines a reproducing kernel Hilbert
space of functions on T whose kernel is precisely K.
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4 APPENDIX

"The Pillars of Infinite Dimensional Linear Algebra"
(In the Context of Hilbert Spaces)

(I) Uniform Boundedness Principle
Let H be a Hilbert space. Given a collection of elements {xα}α∈T in H with the following
property:

∀x ∈ H ∃C = C(x) < ∞ s.t. sup
α∈T
| ⟨xα, x⟩ |≤ C,

then ∃C > 0 such that ∥ xα ∥≤ C ∀xα ∈ T .

(II) Closed Graph Theorem
Let T : H1 → H2 be a linear map between two Hilbert spaces. If the graph of T is
closed, i.e., xn → x and T (xn) → y for a sequence {xn} in H1 with x ∈ H1 and y ∈ H2
implies T (x) = y, then T is continuous.

(III) Alaoglu Theorem
Given a bounded sequence {xn} in a Hilbert space, i.e., ∃C > 0 such that ∥ xn ∥≤ C ∀n,
one can find a subsequence {xkn } of {xn} and a point x ∈ H such that ⟨xkn , h⟩ → ⟨x, h⟩
for every h ∈ H.

(IV) Spectral Theorem for Compact Operators
Given a linear, continuous operator T from a separable Hilbert space H into itself with
the additional properties:

(*) For every bounded sequence {xn} in H, there exists a subsequence {T (xkn )} of
{T (xn)} such that {T (xkn )} converges in H,

(**) T ∗ = T ,

then there exists a sequence λn of real numbers converging to zero and an orthonormal
basis {en}

∞
n=1 of H such that

T (x) =
∞∑

n=1

λn⟨x, en⟩en in H.
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