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Often, one wants to show that some random variable, or a set of
random variables, is close to its expected value (mean) with a high
probability. Results of this kind are called Concentration
Inequalities.

Theorem (Hoeffding’s Inequality — 1963)

Let (P,X ,Ω) be a probability space, f1, . . . , fn independent
random variables with the same expected value µ and such that
aj ≤ fj ≤ bj for all j = 1, . . . , n. Then, for any ε > 0 we have

P

(∣∣1
n

n∑
j=1

fj − µ
∣∣ > ε

)
≤ 2 exp

(
− 2n2ε2∑n

j=1(bj − aj)2

)
.

Wassily Hoeffding, Probability inequalities for sums of
bounded random variables, Journal of the American Statistical
Association 58 (1963), 13–30.



Theorem (Markov-Bienaymé-Chebyshev’s Inequality)

Let (X ; Σ;P) be a probability space, (B; ‖ · ‖) be a Banach space,
h : R>0 → R>0 a nondecreasing function, and let g : X → B be a
Borel measurable function. Then, for any δ > 0, we have

P({x ∈ X | ‖g(x)‖ ≥ δ}) ≤ 1

h(δ)

∫
X
h(‖g(x)‖) dP(x).

Proof. For any δ > 0 let Sδ := {x ∈ X | ‖g(x)‖ ≥ δ} and observe
that, since g is Borel measurable it follows that Sδ ∈ Σ. Since h is
nondecreasing it is measurable and we have h(‖g(x)‖) ≥ h(δ) for
all x ∈ Sδ. Then, since P is nonnegative, we have

1

h(δ)

∫
X
h(‖g(x)‖)dP(x) ≥ 1

h(δ)

∫
Sδ

h(‖g(x)‖) dP(x)

≥ 1

h(δ)

∫
Sδ

h(δ) dP(x) = P(Sδ).



This inequality is mostly used when h(t) = tp for some
0 < p <∞. In particular, for p = 2, we get the following

Corollary

Let (X ; Σ;P) be a probability space, (B; ‖ · ‖) a Banach space, and
let g : X → B be a Borel measurable function. Then, for any
δ > 0, we have

P({x ∈ X | ‖g(x)‖ ≥ δ}) ≤ 1

δ2

∫
X
‖g(x)‖2 dP(x). (1.1)

The classical Bienaymé-Chebyshev Inequality

P({x ∈ X | |f (x)− E (f )| ≥ kσ}) ≤ 1

k2
,

is obtained from the previous corollary applied for B = R,
g(x) = f (x)− E (f ), and δ = kσ, for k > 0, where
E (f ) =

∫
X f (x)dx is the expected value of the random variable f

and σ2 = E ((f −E (f ))2) = E (f 2)−E (f )2 > 0 is the variance of f .



Uniform Bounds for Functions Approximation

The Vapnik-Chervonenkis theory in statistical learning theory relies
on concentration inequalities such as Hoeffding’s inequality to
bound the supremum distance between expected and empirical risk.

V.N. Vapnik, Statistical Learning Theory. Adaptive and Learning
Systems for Signal Processing, Communications, and Control. A
Wiley-Interscience Publication. John Wiley & Sons, Inc., New
York, 1998.

V.N. Vapnik, The Nature of Statistical Learning Theory, 2nd
ed., Springer, 2000.

V.N. Vapnik, A.Ya. Chervonenkis, Theory of Pattern
Recognition. Statistical Problems of Learning [Russian], Izdat.
”Nauka”, Moscow, 1974.



The theory considers a data space X ⊆ Rm × R on which an
unknown probability distribution P is defined, a hypothesis set H
and a loss function V : H× X → R+, such that one wishes to find
a hypothesis h ∈ H that minimizes the expected risk

R[h] :=

∫
X
V (h, x) dP(x).

Since P is not known in general, instead of minimizing the
expected risk one usually minimizes the empirical risk

R̂S [h] =
1

n

n∑
i=1

V (h, xi )

over a finite set S = {xi}ni=1 ⊆ X of samples. Vapnik-Chervonenkis
theory measures the probability with which the maximum distance
between R and R̂ falls below a given threshold.



Definition (Vapnik-Chervonenkis 1968, 1971, 1978)

The Vapnik-Chervonenkis (VC) dimension of H with respect to V
is the maximum cardinality of finite subsets Y ⊆ X that can be
shattered by H, i.e. for each Y ′ ⊆ Y , there exist h ∈ H, α ∈ R
such that

Y ′ = {x ∈ Y | V (h, x) ≥ α} ;

Y \ Y ′ = {x ∈ Y | V (h, x) < α} .



Theorem (Vapnik, Chervonenkis 1991)

Suppose A ≤ V (h, x) ≤ B for each h ∈ H, x ∈ X, the VC
dimension of H is d <∞, and let the sampling data
S = {x1, . . . , xn} be selected according to the probability P. Then,
for any η ∈ (0, 1),

P

sup
h∈H

∣∣∣R[h]− R̂S [h]
∣∣∣ ≥ (B − A)

√
d log 2en

d − log η
4

n

 ≤ η,
or equivalently, for each δ > 0,

P

(
sup
h∈H

∣∣∣R[h]− R̂S [h]
∣∣∣ ≥ δ) ≤ 4e

d log 2en
d
− nδ2

(B−A)2 .



F. Girosi, Approximation error bounds that use VC bounds, in
Proc. International Conference on Artificial Neural Networks, F.
Fogelman-Soulied and P. Gallinari (eds), pp. 295–302, Paris 1995.

F. Girosi has used this general result to bound the uniform distance
between integrals

∫
J(x , y)λ(y)dy and sums of the form

1
n

∑n
i=1 J(x , xi ), by reinterpreting H as Rd , V as J and dP(y) as

|λ(y)|
‖λ‖L1

dy :



Theorem (Girosi, [10, Proposition 2])

Let f : Rd → R, f (x) =
∫
J(x , y)λ(y)dy where λ ∈ L1(Rd) and

A ≤ J(x , y) ≤ B for each x , y ∈ Rd . Let h be the VC dimension of
{J(x , ·)}x∈Rd . Then, with respect to the probability measure

P(E ) =
∫
E
|λ(t)|
‖λ‖L1

dt on Rd , for each η ∈ (0, 1) we have

P

(∥∥∥∥∥f − 1

n

n∑
i=1

sgn (λ(xi )) ‖λ‖L1J(·, xi )

∥∥∥∥∥
L∞

≥ 4(B − A)‖λ‖L1

√
h log 2en

h − log η
4

n

 ≤ η,
where the probability P is extended to the product probability on
(Rd)n, and S = {x1, . . . , xn} denotes an arbitrary sample in Rd



M.A. Kon, L.A. Raphael, Approximating functions in
reproducing kernel Hilbert spaces via statistical learning theory,
Wavelets and Splines: Athens 2005, pp. 271–286, Mod. Methods
Math., Nashboro Press, Brentwood, TN, 2006.

Kon and Raphael [10] then apply this methodology to obtain
uniform approximation bounds of functions in reproducing kernel
Hilbert spaces. They consider two cases where the Hilbert space is
dense in L2(Rd) with a stronger norm, and where it is a closed
subspace with the same norm.



When K ∈ L2(Rd ×Rd) is a positive semidefinite kernel, K defines
a positive compact operator on L2(Rd):

(TK f )(x) =

∫
Rd

f (y)K (x , y) dy

for f ∈ L2(Rd). Then TK admits a positive square root
√
TK ,

itself induced by a kernel
√
K ∈ L2(Rd × Rd).

Recall that, given a Hilbert space G and letting B(G) denote the
collection of all linear bounded operators T : G → G, T is positive
if 〈Tg , g〉 ≥ 0 for all g ∈ G, and then there exists uniquely another
positive operator B ∈ B(G) such that B2 = T , for which we use
the notation T =:

√
T =: T 1/2.

Also, T is compact if it can be approximated uniformly by finite
rank operators.



Proposition

Let K ∈ L2(Rd × Rd) be positive semidefinite. Then the
reproducing kernel Hilbert space associated to K is
HK =

√
TKL

2(Rd), with 〈f , g〉HK
= 〈
√
TK
−1

f ,
√
TK
−1

g〉L2(Rd )

for f , g ∈ HK .

For some kernels, such as sinc, wavelet and spline kernels, HK is a
closed subspace of L2(Rd) and TK is the projection to HK , hence
equal to its square root.

For some other kernels, such as Gaussian or Laplace kernels, HK is
instead dense in L2(Rd) with a stronger norm.

We have the following bounds for the two cases, in which functions
in the RKHS are represented as integrals in different ways.



Theorem (Kon and Raphael [10, Theorem 4])

Let K ∈ L2(Rd × Rd) be positive semidefinite such that HK is
dense in L2(Rd). Suppose there exist positive functions g and k
such that g ∈ L2(Rd), k is bounded away from 0, and

ess sup
x ,y∈Rd

∣∣∣∣∣
√
K (x , y)

g(y)k(x)

∣∣∣∣∣ ≤ τ.
Let h be the VC dimension of {

√
K(x ,·)

g(·)k(x)}x∈Rd . Let f ∈ HK .



Theorem (Continued)

Then with respect to the probability measure∫
dP(x) =

∫
(
√
TK
−1

f )(x)g(x)

‖(
√
TK
−1

f )g‖L1

dx ,

where (
√
TK
−1

f )g ∈ L1(Rd) by the Schwarz inequality since√
TK
−1

f , g ∈ L2(Rd),

f (x)

k(x)
=

1

k(x)

(√
TK (

√
TK
−1

f )
)

(x)

=

∫ √
K (x , y)

g(y)k(x)
(
√
TK
−1

f )(y)g(y) dy ,



Theorem (Continued)

hence for any η > 0, n ∈ N, setting

c(x) =
sgn
(

(
√
TK
−1

f )(x)
)

g(x) ‖(
√
TK
−1

f )g‖L1 we have

P

∥∥∥∥∥f − 1

n

n∑
i=1

c(xi )
√
K (·, xi )

∥∥∥∥∥
L∞,1/k

≥ 4τ‖f ‖HK
‖g‖L2

√
h log 2en

h − log η
4

n

 ≤ η,
where ‖f ‖L∞,1/k := ‖ fk ‖L∞ .



Theorem (Kon and Raphael [10, Theorem 5])

Let K ∈ L2(Rd × Rd) be positive semidefinite such that HK is a
closed subspace of L2(Rd) with the L2 norm. Suppose there exist
positive functions g and k such that g ∈ L2(Rd), k is bounded
away from 0, and

ess sup
x ,y∈Rd

∣∣∣∣ K (x , y)

g(y)k(x)

∣∣∣∣ ≤ τ.
Let h be the VC dimension of { K(x ,·)

g(·)k(x)}x∈Rd . Let f ∈ HK .



Theorem (continued)

Then with respect to the probability measure∫
dP(x) =

∫
f (x)g(x)

‖fg‖L1

dx ,

where fg ∈ L1(Rd) by the Schwarz inequality since f , g ∈ L2(Rd),

f (x)

k(x)
=

1

k(x)
(TK f )(x) =

∫
K (x , y)

g(y)k(x)
f (y)g(y)dy ,

hence for any η > 0, n ∈ N, setting c(x) = sgn(f (x))
g(x) ‖fg‖L1 we have

P

∥∥∥∥∥f − 1

n

n∑
i=1

c(xi )K (·, xi )

∥∥∥∥∥
L∞,1/k

≥ 4τ‖f ‖L2‖g‖L2

√
h log 2en

h − log η
4

n

 ≤ η.



While these bounds guarantee uniform convergence in probability,
the approximating functions are not orthogonal projections of f nor
necessarily elements of a reproducing kernel Hilbert space, and
hence may not capture f exactly at (xi )

n
i=1 nor converge

monotonically. Furthermore, the fact that the norm is not a RKHS
norm means that derivatives of f may not be approximated in
general, since differentiation is not bounded with respect to the
uniform norm.



The Regularised Multiview Learning Problem

Let X be a nonempty set and W = {Wx}x∈X be a bundle of
Hilbert spaces on X . In this section, it is not important whether
the Hilbert spaces are complex or real, hence all Hilbert spaces are
considered to be over the field F, that is either C or R. There is a
difference between the complex and the real case consisting in the
fact that in the latter case, for positive semidefiniteness we assume
also the symmetry, or Hermitian, property, while in the complex
case, the symmetry property is a consequence of the positive
semidefiniteness. If K is a positive semidefinite W-operator valued
kernel, we let HK be its reproducing kernel Hilbert space, as in the
previous subsection.



Also, let Y = {Yx}x∈X be a bundle of Hilbert spaces.
For l , u ∈ N, consider input distinct points x1, . . . , xl+u ∈ X . Here
x1, . . . , xl are the labeled input points while xl+1, . . . , xl+u are the
unlabeled input points. More precisely, there are given y1, . . . , yl
output points, such that yj ∈ Yxj for all j = 1, . . . , l . Then, for the
general data let

x := (xj)
l+u
j=1, y := (yj)

l
j=1, z :=

(
(xj)

l+u
j=l+1, (yj)

l
j=1

)
.

Let Wl+u denote the Hilbert space

Wl+u =
l+u⊕
j=1

Wxj . (2.1)

For f ∈ HK let

f := (f (x1), . . . , f (xl+u)) ∈Wl+u. (2.2)



Also, there is given a (Hermitian, if F = R) positive semidefinite
operator M ∈ B(Wl+u) represented as an operator block
(l + u)× (l + u)-matrix M = [Mj ,k ], with Mj ,k ∈ B(Wxk ,Wxj ) for
all j , k = 1, . . . , l + u. Let V = {Vx}x∈X be a bundle of maps, loss
functions, where Vx : Yx × Yx → R is a function, for all x ∈ X .
Also, C = {Cx}x∈X is a bundle of bounded linear operators, where
Cx : Wx → Yx for all x ∈ X . The general minimisation problem is

fz,γ = argminf ∈HK

1

l

l∑
j=1

Vxj (yj ,Cxj f (xj))+γA‖f ‖2
HK

+γI 〈f,Mf〉Wl+u ,

(2.3)
where γ = (γA, γI ) and γA > 0 and γI ≥ 0 are the regularisation
parameters. This is a localised version of the general vector valued
reproducing kernel Hilbert space for manifold regularised and
coregularised multiview learning.



It is also useful to introduce the map to be minimised

I(f ) :=
1

l

l∑
j=1

Vxj (yj ,Cxj f (xj)) + γA‖f ‖2
HK

+ γI 〈f,Mf〉Wl+u

and, since f (x) = K ∗x f for all f ∈ HK and all x ∈ X , it equals

=
1

l

l∑
j=1

Vxj (yj ,CxjK
∗
xj
f ) + γA‖f ‖2

HK
+ γI 〈f,Mf〉Wl+u , (2.4)



Reproducing Kernel Hilbert Spaces

We briefly review some concepts and facts on reproducing kernel
Hilbert spaces, following classical texts such as:
N. Aronszajn, La théorie générale des noyaux reproduisants et
ses applications, Premiére Partie, Proc. Cambridge Philos. Soc.
39(1944), 133–153.
N. Aronszajn, Theory of reproducing kernels. Trans. Amer.
Math. Soc., 68(1950), 337–404.
L. Schwartz, Sous espace Hilbertiens déspaces vectoriel
topologiques et noyaux associés (noyaux reproduisants), J. Analyse
Math. 13(1964), 115–256.
S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and
Applications, Springer, Singapore 2016.
V.I. Paulsen, M. Raghupathi, An Introduction to the Theory
of Reproducing Kernel Hilbert Spaces, Cambridge University Press,
Cambridge 2016.



Throughout this presentation we denote by F one of the
commutative fields R or C. For a nonempty set X let FX denote
the set of F-valued functions on X , forming an F-vector space
under pointwise addition and scalar multiplication. For each
p ∈ X , the evaluation map at p is the linear functional

evp : FX → F; f 7→ f (p).

The evaluation maps equip FX with the locally convex topology of
pointwise convergence, which is the weakest topology on FX that
renders each evaluation map continuous. Under this topology, a
generalized sequence in FX converges if and only if it converges
pointwise, i.e. its image under each evaluation map converges.
Since each evaluation map is linear and hence the vector space
operations are continuous, this renders FX into a complete
Hausdorff locally convex space. With respect to this topology, if X
is a topological space, a map φ : X → FX is continuous if and only
if evp ◦ φ : X → F is continuous for all p ∈ X .



We are interested in Hilbert spaces H ⊆ FX with topologies at
least as strong as the topology of pointwise convergence of FX , so
that the convergence of a sequence of functions in H implies that
the functions also converge pointwise. When X is a finite set,
FX ∼= Fd , where d is the number of elements of X , can itself be
made into a Hilbert space with a canonical inner product
〈f , g〉 :=

∑
p∈X f (p)g(p), or in general by an inner product

induced by a positive semidefinite d × d matrix. This leads to the
concept of reproducing kernel Hilbert spaces.
Recalling the F. Riesz’s Theorem of representations of bounded
linear functionals on Hilbert spaces, if each evp : H → F restricted
to H ⊆ FX is continuous, for each p ∈ X , then there exists a
unique vector Kp ∈ H such that evp = 〈·,Kp〉. But, since each
vector in H is itself a function X → F, these vectors altogether
define a map K : X × X → F, K (p, q) := Kq(p). Also, recall that
a map K : X × X → F is usually called a kernel.



Definition
Let H ⊆ FX be a Hilbert space, K : X × X → F a kernel. For each
p ∈ X define Kp := K (·, p) ∈ FX . K is said to be a reproducing
kernel for H, and H is then said to be a reproducing kernel Hilbert
space (RKHS), if, for each p ∈ X , we have

(i) Kp ∈ H;

(ii) evp = 〈·,Kp〉, that is, for every f ∈ H we have f (p) = 〈f ,Kp〉.
The second property is referred to as the reproducing property of
the kernel K .

We may then summarize the last few paragraphs with the following
characterization.

Theorem
Let H ⊆ FX be a Hilbert space. The following assertions are
equivalent:

(i) The canonical injection iH : H → FX is continuous.

(ii) For each p ∈ X, the map evp : H → F is continuous.

(iii) H admits a reproducing kernel.



In that case, the reproducing kernel admitted by the Hilbert space
is unique, by the uniqueness of the Riesz representatives Kp of the
evaluation maps. We may further apply the reproducing property
to each Kq to obtain that K (p, q) = 〈Kq,Kp〉 for each p, q ∈ X ,
yielding the following properties:

(i) For each p ∈ X , K (p, p) = ‖Kp‖2 ≥ 0.

(ii) For each p, q ∈ X , K (q, p) = K (p, q) and

|K (p, q)|2 ≤ K (p, p)K (q, q). (3.1)

(iii) For each n ∈ N, (ci )
n
i=1 ∈ Fn, (pi )

n
i=1 ∈ X n,

n∑
i=1

n∑
j=1

cicjK (pi , pj) = ‖
n∑

i=1

ciKpi‖
2 ≥ 0.

The property in (3.1) is the analogue of the Schwarz Inequality. As
a consequence of it, if K (p, p) = 0 for some p ∈ X then
K (p, q) = K (q, p) = 0 for all q ∈ X .



For any K : X × X → F, each Kp ∈ FX so we may define the
subspace

H̃K := span {Kp | p ∈ X}

of FX . If K is the reproducing kernel of a Hilbert space H, H̃K is
also a subspace of H and

H̃⊥K = {f ∈ H | ∀p ∈ X , f (p) = 〈f ,Kp〉 = 0} = {0},

therefore, H̃K is a dense subspace of H, equivalently, {Kp | p ∈ X}
is a total set for H.
The property at item (iii) is known as the positive semidefiniteness
property. A positive semidefinite kernel K is called definite if
K (p, p) 6= 0 for all p ∈ X . Positive semidefiniteness is in fact
sufficient to characterize all reproducing kernels.

Theorem (Moore-Aronszajn)

Let K : X × X → F be a positive semidefinite kernel. Then there is
a unique Hilbert space HK ⊆ FX with reproducing kernel K .



Let us briefly recall the construction of the Hilbert space HK in the
proof. We first render H̃K into a pre-Hilbert space satisfying the
reproducing property. Define on H̃K the inner product

〈
n∑

i=1

aiKpi ,

m∑
j=1

bjKqj 〉H̃K
:=

n∑
i=1

m∑
j=1

aibjK (qj , pi )

for any
∑n

i=1 aiKpi ,
∑m

j=1 bjKqj ∈ H̃K . It is proven that the
definition is correct and provides indeed an inner product.
Let ĤK be the completion of H̃K , then ĤK is a Hilbert space with
an isometric embedding φ : H̃K → ĤK whose image is dense in
ĤK . It is proven that this abstract completion can actually be
realized in FX and that it is the RKHS with reproducing kernel K
that we denote by HK .



In applications, one of the most useful tool is the interplay between
reproducing kernels and orthonormal bases of the underlying
RKHSs. Although this fact holds in higher generality, we state it
for separable Hilbert spaces since, most of the time, this is the case
of interest.

Theorem
Let H ⊆ FX be a separable RKHS, with reproducing kernel K , and
let {φn}n be an orthonormal basis of H. Then

K (p, q) =
∞∑
n=1

φn(p)φn(q), p, q ∈ X ,

where the series converges absolutely pointwise.



We now recall a useful result on the construction of new RKHSs
and positive semidefinite kernels from existing ones. It also shows
that the concept of reproducing kernel Hilbert space is actually a
special case of the concept of operator range.

Theorem
Let H be a Hilbert space, Φ: H → FX a continuous linear
operator. Then Φ(H) ⊆ FX with the norm

‖f ‖Φ(H) := min {‖u‖H | u ∈ H, f = Φu}

is a RKHS, unitarily isomorphic to (ker Φ)⊥. The kernel for Φ(H)
is then given by the map
(p, q) 7→ 〈uq, up〉 = (evp ◦ Φ)(uq) = Φ(uq)(p) where uq ∈ H such
that evq ◦ Φ = 〈·, uq〉 on H.

Applying this proposition to particular continuous linear maps, one
obtains useful results for pullbacks, restrictions, sums, scaling, and
normalizations of kernels.



We now consider domains equipped with an additional topological
or differential structure and recall the relations between the
properties of the kernel with respect to this structure to properties
of the functions in the corresponding reproducing kernel Hilbert
space, e.g. see [15, Section 2.1.3]. Let H ⊆ FX be a RKHS, K its
corresponding kernel. Define

ΦK : X → H; p 7→ Kp. (3.2)

Theorem (Boundedness of Kernel)

Let H ⊆ FX be a RKHS, K its corresponding kernel. Then K is
bounded iff ΦK is bounded. In that case every function in H is
bounded, and convergence in H implies uniform convergence.

Theorem (Continuity of Kernel)

Suppose X is a metric space, let H ⊆ FX be a RKHS, K its
corresponding kernel. Then K is (uniformly) continuous iff ΦK is
(uniformly) continuous. In that case every function in H is
(uniformly) continuous, and convergence in H implies uniform
convergence on compact sets.



Theorem (Differentiability of Kernel)

Suppose X ⊆ Rd is open, let H ⊆ FX be a RKHS, K its
corresponding kernel. Then for j = 1, . . . , d, K is continuously
differentiable in the j th component of both entries on X if and only
if ΦK is continuously differentiable in the j th component, i.e. the
limit

∂qjKq := lim
h→0

Kq+hej − Kq

h

exists and is continuous with respect to q ∈ X, where (ej)
d
j=1 is

the canonical basis for Rd . In that case, every function in H is
once continuously differentiable in the j th component, and we have
(∂j f )(q) = 〈f , ∂qjKq〉 for each f ∈ H, q ∈ X.

The j th partial derivatives of functions in H are contained in
another reproducing kernel Hilbert space ∂jH, with kernel ∂pj∂qjK,
such that the map ∂j : H → ∂jH is not only continuous but
non-expansive, and unitary if H does not contain any nonzero
function constant in the j th component.



The previous theorem has natural generalizations for functions of
class Ck(X ) for k ≥ 1, and functions that are real or complex
analytic on X .



Example (A non-example)

The Banach space C [0, 1] has the property that for any x ∈ [0, 1]
the evaluation functional evx : C [0, 1]→ C is continuous and it is
dense in L2[0, 1]. However, for any x ∈ [0, 1] the evaluation map
evx is not continuous with respect to the norm of L2[0, 1].
Indeed, if 0 < x < 1 then letting

fn(t) :=

{
tn

xn , 0 ≤ t ≤ x ,
(1−t)n

(1−x)n , x < t ≤ 1,

is a sequence of functions in C [0, 1] such that evx(fn) = fn(x) = 1
for all n ≥ 1 but

lim
n→∞

‖fn‖L2[0,1] = 0.

For x = 0 we can take fn(t) := (1− t)n and, for x = 1 we can take
fn(t) := tn.
This shows that L2[0, 1] cannot have a structure of a RKHS on
[0, 1].
In general, RKHS are quite different from L2-spaces.



Example (Uniform distribution on a compact interval)

Let (µj)j∈Z ∈ l1(Z) be such that µj > 0 for all j ∈ Z and denote
µ :=

∑
j∈Z µj . For each j ∈ Z define

φj : [−π, π]→ C, φj(t) := eiπjt , t ∈ [−π, π],

and consider the Hilbert space

H =

∑
j∈Z

cjφj |
∑
j∈Z

|cj |2

µj
<∞

 ,

with the inner product

〈
∑
j∈Z

cjφj ,
∑
j∈Z

djφj〉 =
∑
j∈Z

cjdj
µj

.



Example

Then {√µjφn}j∈Z is an orthonormal basis of H and, for an
arbitrary function f ∈ H, we have the Fourier representation

f (t) =
∑
j∈Z

cjφj(t), t ∈ [−π, π], (4.1)

with coefficients {cj}j∈Z subject to the condition

‖f ‖2
H :=

∑
j∈Z

|cj |2

µj
<∞, (4.2)

where the convergence of the series from (8.1) is at least
guaranteed with respect to the norm ‖ · ‖H.



Example

However, for any m ∈ N0 and t ∈ [−π, π], by the Cauchy
inequality we have

∑
|j |≥m

|cjφj(t)| ≤
(∑
|j |≥m

|cj |2

µj

)1/2(∑
|j |≥m

µj
)1/2 −−−−→

m→∞
0,

hence the convergence in (8.1) is absolutely and uniformly on
[−π, π], in particular f is continuous.



Example

By Theorem 16 H has the reproducing kernel

K (s, t) =
∑
j∈Z

µje
iπj(s−t) =

∑
j∈Z

µjφj(s)φj(t), (4.3)

and the convergence of the series is guaranteed at least pointwise.
In addition, for any t ∈ [−π, π] we have

K (t, t) =
∑
j∈Z

µj |φj(t)|2 =
∑
j∈Z

µj = µ,

and hence the kernel K is bounded. In particular, this implies that,
actually, the series in (8.3) converges absolutely and uniformly on
[−π, π], hence the kernel K is continuous on [−π, π]× [−π, π].
That is, K (s, t) is given by κ(s − t) where κ : R→ C is a
continuous function with period 2π whose Fourier coefficients
(µj)j∈Z are all positive and absolutely summable.



Example (The Hardy space H2(D))

We consider the open unit disc in the complex plane
D = {z ∈ C | |z | < 1} and the Szegö kernel

K (z , ζ) =
1

1− zζ
=
∞∑
n=0

znζ
n
, z , ζ ∈ D, (4.4)

where the series converges absolutely and uniformly on any
compact subset of D. The RKHS associated to K is the Hardy
space H2(D) of all functions f : D→ C that are holomorphic in D
with power series expansion

f (z) =
∞∑
n=0

fnz
n, (4.5)

such that the coefficients sequence (fn)n is in `2
C(N0).



Example

The inner product in H2(D) is

〈
∞∑
n=0

fnz
n,

∞∑
n=0

gnz
n〉 =

∞∑
n=0

fngn,

with norm

‖
∞∑
n=0

fnz
n‖2 =

∞∑
n=0

|fn|2.

For each ζ ∈ D we have

‖Kζ‖ =
( ∞∑
n=0

|ζ|2n
)1/2

=
1√

1− |ζ|2
,

hence the kernel K is unbounded.



Example (The Hardy Space H2(Dn))

Given n ∈ N, we let j = (j1, . . . , jn) ∈ Nn
0 be a multi-index and, for

z = (z1, . . . , zn) ∈ Cn we set z j := z j11 · · · z
jn
n . A power series in n

variables is a formal expression

f (z) =
∑
j∈Nn

0

ajz
j , (4.6)

where aj ∈ C for all j ∈ Nn
0.

The Hardy space H2(Dn) is the set of all power series f as in (4.6),
where z ∈ Dn and ∑

j∈Nn
0

|aj |2 < +∞,

hence the power series converges absolutely and uniformly on any
compact subset in Dn and defines an analytic function in Dn.
H2(Dn) is a RKHS and its kernel is given by

K (ζ,w) =
∑
j∈Nn

0

w jζ j =
n∏

k=1

1

1− wkζk
, ζ,w ∈ Dn.



Examples

Example (Paley-Wiener spaces and kernels)

Let M > 0. The Paley-Wiener space with bandwidth M is defined
as

HM :=
{
f ∈ L2(R) | f̂ ∈ L2[−M,M]

}
,

where f̂ is the Fourier transform of f , is a closed subspace of
L2(R), and a RKHS with the kernel

KM(x , y) :=
1√
2π

∫ M

−M
eiω(x−y) dω

=
1√
2π

eiM(x−y) − e−iM(x−y)

i(x − y)
=

√
2

π
Msinc(M(x − y))

by the unitarity of the Fourier transform, where sinc(x) := sin x
x for

x ∈ R \ {0} and sinc(0) = 1.



Example

For M ′ > M, HM′ contains HM as a closed subspace. By the
properties of the Fourier transform and the fact that∫M
−M |ω|

2 dω <∞, derivatives of functions in HM are also
contained in HM .
By the well-known Shannon-Nyquist sampling theorem,
(KM,nπ/M)n∈Z is an orthogonal basis for HM . This is usually
shown by noting the convergence of the Fourier series on
L2[−M,M]. We then have the Whittaker-Shannon interpolation
formula, actually dating back to Émile Borel:

f (t) =
∑
n∈Z

f (nT )
Kπ/T (t, nT )

Kπ/T (nT , nT )
=
∑
n∈Z

f (nT ) sinc

(
π
t − nT

T

)
for f ∈ HM , t ∈ R and T ≤ π/M. That is, a signal of bandwidth
M can be interpolated exactly from samples of frequency at least
2M.



Example (Sobolev spaces)

Recall that, given an interval I in R, a function f : I → R (or C) is
called absolutely continuous if, for any ε > 0 there exists δ > 0
such that whenever a finite sequence of pairwise disjoint
subintervals (xk , yk), k = 1, . . . , n has

n∑
k=1

(yk − xk) < δ,

then
n∑
k

|f (yk)− f (xk)| < ε.

The collection of all absolutely continuous functions on I is
denoted by AC(I ).



Example

The following conditions on a function f on a compact interval
[a, b] are equivalent:
(1) f is absolutely continuous;
(2) f has a derivative f ′ almost everywhere, the derivative is
Lebesgue integrable, and

f (x) = f (a) +

∫ x

a
f ′(t) dt, x ∈ [a, b];

(3) there exists a Lebesgue integrable function g on [a, b] such that

f (x) = f (a) +

∫ x

a
g(t) dt, x ∈ [a, b].

If these equivalent conditions are satisfied then necessarily g = f ′

almost everywhere.
Equivalence between (1) and (3) is known as the fundamental
theorem of Lebesgue integral calculus, due to Lebesgue.



Example

• The sum and difference of two absolutely continuous functions
are also absolutely continuous. If the two functions are defined on
a bounded closed interval, then their product is also absolutely
continuous.
• If an absolutely continuous function is defined on a bounded
closed interval and is nowhere zero then its reciprocal is absolutely
continuous.
• Every absolutely continuous function is uniformly continuous
and, therefore, continuous. Every Lipschitz-continuous function is
absolutely continuous.
• If f : [a, b]→ R is absolutely continuous, then it is of bounded
variation on [a, b].



Example

• If f : [a, b]→ R is absolutely continuous, then it can be written
as the difference of two monotonic nondecreasing absolutely
continuous functions on [a, b].
• If f : [a, b]→ R is absolutely continuous, then it has the Luzin N
property, that is, for any Lebesgue negligeable L ⊆ [a, b] the set
f (L) is Lebesgue negligeable.
• f : I → R is absolutely continuous if and only if it is continuous,
is of bounded variation and has the Luzin N property.



Example

Let H be the set of all absolutely continuous functions
f : [0, 1]→ R such that its derivative f ′ ∈ L2[0, 1] and
f (0) = f (1) = 0. Then H is a vector space of functions on [0, 1]
that is a Hilbert space with respect to the inner product

〈f , g〉 :=

∫ 1

0
f ′(t)g ′(t)dt, f , g ∈ H,

and such that, for every x ∈ [0, 1] the evaluation functional evx is
bounded with ‖evx‖ ≤

√
x . This follows, e.g. by observing that,

for any 0 ≤ x ≤ 1 and any f ∈ H,

f (x) =

∫ x

0
f ′(t) dt =

∫ 1

0
f ′(t)χ[0,x](t) dt,

hence

|f (x)| ≤
(∫ 1

0
f ′(t)2 dt

)1/2(∫ 1

0
χ[0,x](t)dt

)1/2

=
√
x‖f ‖L2[0,1].



Example

In order to find the reproducing kernel K of H, for arbitrary f ∈ H
and x ∈ [0, 1], by integration by parts,

f (x) = 〈f ,Kx〉 =

∫ 1

0
f ′(t)K ′x(t) dt

= f (t)K ′x(t)

∣∣∣∣1
0

−
∫ 1

0
f (t)K ′′x (t)dt = −

∫ 1

0
f (t)K ′′x (t) dt,

thus, Kx is the Green function of the Laplacian with Dirichlet
bounday conditions, that is, the solution of the boundary value
problem

−K ′′x (t) = δx(t), Kx(0) = Kx(1) = 0,

where δx is the formal Dirac function, which yields

Kx(t) = K (t, x) =

{
(1− x)t, 0 ≤ t ≤ x ≤ 1,

(1− t)x , 0 ≤ x ≤ t ≤ 1.



Example

Then,

K ′x(t) =

{
1− x , t < x ,

−x , t > x ,

hence Kx is differentiable except at x (hence almost everywhere)
and is equal to the integral of its derivative, hence absolutely
continuous, Kx(0) = Kx(1) = 0, and K ′x is square-integrable, hence
Kx ∈ H.
Also, for f ∈ H, we have

〈f ,Kx〉 =

∫ 1

0
f ′(t)K ′x(t)dt

=

∫ x

0
f ′(t)(1− x) dt +

∫ 1

x
f ′(t) (−x)dt

= (f (x)− f (0))(1− x)− x(f (1)− f (x)) = f (x),

hence K is the reproducing kernel of H. Also,
‖evx‖2 = ‖Kx‖2 = K (x , x) = x(1− x), hence ‖evx‖ =

√
x(1− x).



Integration of RKHS-Valued Functions

Let (E ; ‖ · ‖) be a (real or complex) Banach space and (X ,Σ, µ) a
finite measure space. On E we consider the Borel σ-algebra
denoted by B(E). A map f : X → E is called measurable if
f −1(S) ∈ Σ for all S ∈ B(E) and it is called strongly measurable if
it is measurable and its range f (X ) is separable. If E is a separable
Banach space then the concepts coincide. Both sets of measurable
functions, respectively strongly measurable functions, are vector
spaces.



A map φ : X → E is simple if it is measurable and its range φ(X ) is
finite, equivalently, there exist b1, . . . , bn ∈ E and E1, . . . ,En ∈ Σ
such that

φ =
n∑

k=1

bkχEk
, (5.1)

where we denote, as usually, by χA the characteristic (or indicator)
function of A.

It is proven that, a function f : X → B is strongly measurable if
and only if there exists a sequence of simple functions (φn)n such
that φn −→

n
f pointwise on X . In addition, in this case, the sequence

(φn)n can be chosen such that ‖φn(x)‖ ≤ ‖f (x)‖ for all x ∈ X .



A function f : X → E is Bochner integrable if it is strongly
measurable and the scalar function X 3 x 7→ ‖f (x)‖ ∈ R is
integrable. In this case, the Bochner integral of f is defined as
follows. Firstly, for a Bochner integrable function φ as in (5.1), it
is proven that µ(Ek) <∞ for all k = 1, . . . , n and then, its
Bochner integral is defined by∫

X
φ(x) dµ(x) :=

n∑
k=1

bkµ(Ek) ∈ E .

In general, if f is Bochner integrable, then there exists a sequence
of simple functions (φn)n that converges pointwise to f on X and
‖φn(x)‖ ≤ ‖f (x)‖ for all x ∈ X and all n ∈ N. In this case, it can
be proven that the sequence (

∫
X φn(x) dµ(x))n is Cauchy in E ,

hence it has a limit and we define∫
X
f (x) dµ(x) := lim

n→∞

∫
X
φn(x)dµ(x).

It can be proven that this definition is correct, that is, it does not
depend on the sequence (φn)n.



Bochner integrable functions share many properties with
scalar-valued integrable functions, but not all. For example, the
collection of all Bochner integrable functions make a vector space
and, for any Bochner integrable function f we have∥∥∥∥∫

X
f (x) dµ(x)

∥∥∥∥ ≤ ∫
X
‖f (x)‖ dµ(x). (5.2)

Also, letting L1(X ;µ; E) denote the collection of all equivalence
classes of Bochner integrable functions, identified µ-almost
everywhere, this is a Banach space with norm

‖f ‖1 :=

∫
X
‖f (x)‖ dµ(x), f ∈ L1(X ;µ; E).

In addition, the Dominated Convergence Theorem holds for the
Bochner integral as well, e.g. see [3, Theorem E.6].



We will use the following result, which is a special case of a
theorem of E. Hille, e.g. see [5, Theorem III.2.6]. In Hille’s
Theorem, the linear transformation is supposed to be only closed
and, consequently, additional assumptions are needed, so we
provide a proof for the special case of bounded linear operators for
the reader’s convenience.

Theorem
Let E be a Banach space, (X , µ) a measure space, and f : X → E
a Bochner integrable function. If L : E → F is a continuous linear
transformation between Banach spaces, then L ◦ f : X → F is
Bochner integrable and∫

X
(L ◦ f )(x) dµ(x) = L

∫
X
f (x) dµ(x).



Proof. Since f is Bochner integrable, there exists a sequence (φn)n
of simple functions that converges pointwise to f on X and
‖φn(x)‖ ≤ ‖f (x)‖ for all x ∈ X and all n ∈ N. Then,

‖Lφn(x)−Lf (x)‖ = ‖L(φn(x)−f (x))‖ ≤ ‖L‖‖φn(x)−f (x)‖ −→
n

0, x ∈ X ,

hence the sequence (L ◦ φn)n converges pointwise to L ◦ f . Also, it
is easy to see that L ◦ φn is a simple function for all n ∈ N. These
show that L ◦ f is strongly measurable. Since ‖Lf (x)‖ ≤ ‖L‖‖f (x)‖
for all x ∈ X and f is Bochner integrable, it follows that∫

X
‖Lf (x)‖ dµ(x) ≤ ‖L‖

∫
X
‖f (x)‖dµ(x) <∞,

hence L ◦ f is Bochner integrable.



On the other hand,

‖Lφn(x)‖ ≤ ‖L‖‖φn(x)‖ ≤ ‖L‖‖f (x)‖, x ∈ X , n ∈ N,

hence, by the Dominated Convergence Theorem for the Bochner
integral, it follows that∫

X
Lf (x) dµ(x) = lim

n→∞

∫
X
Lφn(x)dµ(x) = lim

n→∞
L

∫
X
φn(x) dµ(x)

= L lim
n

∫
X
φn(x) dµ(x) = L

∫
X
f (x) dµ(x).



A direct consequence of this fact is a sufficient condition for when
a pointwise integral coincides with the Bochner integral, valid not
only for RKHSs but also for Banach spaces of functions on which
evaluation maps at any point are continuous, e.g. C (Y ) for some
compact Hausdorff space Y .

Proposition

Let (X ,Σ, µ) be a measure space, B ⊆ FX a Banach space of
functions on X such that all evaluation maps on B are continuous.
Let λ : X × X → F be such that for each q ∈ X we have
λq := λ(·, q) ∈ B.
If, for each q ∈ X, the map X 3 q 7→ λq ∈ B is Bochner
integrable, then the scalar map X 3 q 7→ λ(p, q) ∈ F is integrable,
for each fixed p ∈ X.
Moreover, in that case, the pointwise integral map
X 3 p 7→

∫
X λ(p, q) dµ(q) lies in B and coincides with the

Bochner integral
∫
X λq dµ(q).



Proof. Since, for each q ∈ X , the map
X 3 q 7→ φ(q) := λ(·, q) ∈ B is Bochner integrable, and taking
into account that, for all p ∈ X , the linear functional evp is
continuous, by Theorem 38 we have

evp

∫
X
φ(q)dµ(q) =

∫
X

evp ◦ φ(q) dµ(q).

Since evp ◦ φ(q) = λ(p, q) for all p, q ∈ X , this means that the
scalar map X 3 q 7→ λ(p, q) ∈ F is integrable, for each fixed
p ∈ X , and

evp

∫
X
φ(q) dµ(q) =

∫
X
λ(p, q)dµ(q), p ∈ X ,

hence, the pointwise integral map X 3 p 7→
∫
X λ(p, q)dµ(q) lies in

B and coincides with the Bochner integral
∫
X λq dµ(q).



Convergence of Discrete Sampling in RKHSs

Let (H,K ) be a separable RKHS over a set X . Given f ∈ H and
fixed (xi )

N
i=1 ∈ X , the problem of finding the optimal

(ωN
i (f ))Ni=1 ∈ F to minimize ‖f −

∑N
i=1 ω

N
i (f )Kxi‖H is

straightforward:
∑N

i=1 ω
N
i (f )Kxi is the orthogonal projection of f

to span{Kxi}Ni=1.

We may assume without loss of generality that {Kxi}Ni=1 are
linearly independent, by removing points as necessary without
affecting span{Kxi}Ni=1 (or losing any information about f , since∑N

i=1 ciKxi = 0 implies
∑N

i=1 ci f (xi ) = 0 by the reproducing
property).



Proposition

Let (xi )
N
i=1 ∈ X such that {Kxi}Ni=1 are linearly independent,

consider the finite-dimensional subspace HN
x := span{Kxi}Ni=1 of

H. Then the orthogonal projection πNx of H onto HN
x is given by

πNx (f ) =
N∑
i=1

ωπi (f )Kxi :=
N∑
i=1

N∑
j=1

f (xj)ΓN
ji Kxi =

N∑
i=1

N∑
j=1

〈f ,Kxj 〉Γ
N
ji Kxi

for any f ∈ H, where ΓN ∈MN(F) is the inverse of the Gram

matrix GN := [K (xj , xi )]Ni ,j=1 =
[
〈Kxi ,Kxj 〉

]N
i ,j=1

of {x1, . . . , xN}.
More generally, if {Kxi}Ni=1 are not linearly independent, for any
subset s = (xij )

K
j=1 such that {Kxij

}Ni=1 form a basis for HN
x , we

have HN
x = HK

s and

πNx = πKs =
K∑
j=1

K∑
k=1

〈·,Kxik
〉ΓK

kjKxij
.



Proof. Let f ∈ H, then πNx (f ) ∈ HN
x so there exist unique

(ωπi (f ))Ni=1 ∈ F such that πNx (f ) =
∑N

i=1 ω
π
i (f )Kxi .

(ωπi (f ))Ni=1 can then be solved by noting that f − πNx (f )⊥HN
x i.e.

f − πNx (f )⊥Kxj for each j = 1, . . . ,N:

0 = 〈f − πNx (f ),Kxj 〉 = 〈f ,Kxj 〉 −
N∑
i=1

ωπi (f )〈Kxi ,Kxj 〉

= f (xj)−
N∑
i=1

ωπi (f )GN
ij

thus, since {Kxi}Ni=1 are linearly independent and GN is invertible,
for each i = 1, . . . ,N

ωπi (f ) =
N∑

k=1

ωπk (f )δki =
N∑

k=1

N∑
j=1

ωπk (f )GN
kj ΓN

ji =
N∑
j=1

f (xj)ΓN
ji .



We now follow Saitoh and Sawano [15, 2.4.4] in showing the
strong convergence of πNx to the identity map as N →∞ for
appropriately chosen (xi )

∞
i=1.

Since H is separable, there exists a countable subset of {Kp}p∈X
which is total in H; thus, there exists a countable set F ⊆ X such
that span{Kx}x∈F is dense in H.

This motivates the following definition:

Definition
A countable subset {xi}∞i=1 of X is called a uniqueness set for H if
{Kxi}∞i=1 is a total set in H, i.e. for all f ∈ H, f (xi ) = 0 ∀i ∈ N
implies f = 0.



Theorem (Ultimate realization of RKHSs, [15, Theorem 2.33])

Let (H,K ) be a RKHS on X , {xi}∞i=1 a uniqueness set such that
{Kxi}∞i=1 is linearly independent, GN the Gram matrix for {xi}Ni=1,
ΓN = (GN)−1. Then for each f ∈ H,

lim
N→∞

N∑
i=1

N∑
j=1

f (xi )ΓN
ij Kxj = f

under the topology of H, with distance decreasing monotonically.
Consequently,

〈f , g〉 = lim
N→∞

N∑
i=1

N∑
j=1

f (xi )ΓN
ij g(xj)

for f , g ∈ H, and

f (x) = 〈f ,Kx〉 = lim
N→∞

N∑
i=1

N∑
j=1

f (xi )ΓN
ij K (x , xj)

for f ∈ H, x ∈ X.



Proof. Since each πNx , being a projection, is a continuous linear
operator with operator norm 1, and span{Kxi}∞i=1 is dense in H,
showing limN→∞ π

N
x f = f for f ∈ span{Kxi}∞i=1 is sufficient.

But for each f ∈ span{Kxi}∞i=1, since f is a linear combination of

finitely many Kxi s, there exists Nf ∈ N such that f ∈ span{Kxi}
Nf
i=1.

Then for each N ≥ Nf , πNx f = f , so limN→∞ π
N
x f = f .



Corollary

Let {xi}∞i=1 be a uniqueness set for (H,K ), {yi}∞i=1 a sequence in
F. Suppose {yi}∞i=1 satisfies

sup
N∈N

N∑
i=1

N∑
j=1

yiΓ
N
ij yj <∞.

Then there exists (unique) F ∈ H such that F (xi ) = yi ∀i ∈ N.



Proof. Define for each N ∈ N

fN :=
N∑
i=1

yiΓ
N
ij Kxj ∈ H.

Then

‖fN‖2 = 〈fN , fN〉 =
N∑
i=1

yiΓ
N
ij yj ≤ sup

N∈N

N∑
i=1

yiΓ
N
ij yj <∞

so (fN)N is a bounded sequence in H. Then by the Banach-Alaoglu
theorem, it has a weakly convergent subsequence (fNk

)k .



Let F ∈ H be the weak limit of (fNk
)k , i ∈ N. Then there exists

ki ∈ N such that i ≤ Nk for every k ≥ ki . In that case,

(fNk
)(xi ) =

N∑
l=1

N∑
j=1

ylΓ
N
lj K (xi , xj) =

N∑
l=1

yl

N∑
j=1

ΓN
lj G

N
ji =

N∑
l=1

ylδli = yi .

That is, 〈fNk
,Kxi 〉 = yi for each k ≥ ki . Then by the weak

convergence of (fNk
)k to F ,

F (xi ) = 〈F ,Kxi 〉 = lim
k→∞
〈fNk

,Kxi 〉 = yi .



Main Results

Throughout this section we consider a probability measure space
(X ; Σ;P) and a RKHS (H; 〈·, ·〉) in FX , with norm denoted by
‖ · ‖, such that its reproducing kernel K is measurable. In addition,
throughout this section, the reproducing kernel Hilbert space H is
supposed to be separable.

Definition
On the measurable space (X ; Σ) we define the measure PK by

dPK (x) = K (x , x) dP(x), x ∈ X ;

more precisely, PK is the absolutely continuous measure with
respect to P such that the function X 3 x 7→ K (x , x) is the
Radon-Nikodym derivative of PK with respect to P.



With respect to the measure space (X ; Σ;PK ) we consider the
Hilbert space L2(X ;PK ) and first obtain a natural bounded linear
operator mapping L2(X ;PK ) to H.

Proposition

With notation and assumptions as before, let λ : X → F be a
measurable function such that the integral

∫
X |λ(x)|2 dPK (x) is

finite. Then the Bochner integral∫
X
λ(x)Kx dP(x)

exists in H.
In addition, the mapping

L2(X ;PK ) 3 λ 7→ LP,Kλ :=

∫
X
λ(x)Kx dP(x) ∈ H, (7.1)

is a nonexpansive, hence bounded, linear operator.



Proof. By assumptions, the map X 3 x 7→ λ(x)Kx ∈ H is
measurable and, since H is separable, it follows that this map is
actually strongly measurable. Letting ‖ · ‖ denote the norm on H
and using the assumption that

∫
X |λ(x)|2K (x , x)dP(x) is finite,

we have∫
X
‖λ(x)Kx‖2 dP(x) =

∫
X
|λ(x)|2K (x , x) dP(x) <∞,

hence, by the Schwarz Inequality and taking into account that P is
a probability measure, we have∫

X
‖λ(x)Kx‖ dP(x) ≤

√∫
X
‖λ(x)Kx‖2 dP(x) <∞.

By Theorem 38 this implies that the Bochner integral∫
X λ(x)Kx dP(x) exists in H. Consequently, the mapping LP,K as

in (7.1) is correctly defined and it is clear that it is a linear
transformation.



For arbitrary λ ∈ L2(X ;PK ), by the triangle inequality for the
Bochner integral (5.2) we then have∥∥∥∥∫

X
λ(x)Kx dP(x)

∥∥∥∥2

≤
(∫

X
‖λ(x)Kx‖dP(x)

)2

=

(∫
X
|λ(x)|K (x , x)1/2 dP(x)

)2

and applying the Schwarz Inequality for the integral and taking
into account that P is a probability measure

≤
∫
X
|λ(x)|2K (x , x) dP(x) = ‖λ‖2

L2(X ;PK ),

hence LP,K : L2(X ;PK )→ H is a nonexpansive linear operator.



Using the bounded linear operator LP,K defined as in (7.1), let us
denote its range by

HP := LP,K (L2(X ;PK )), (7.2)

which is a subspace of the RKHS H.

Proposition

HP is a RKHS contained in H, hence in FX , and its reproducing
kernel KP is

KP(x , y) =

∫
X

K (x , z)K (z , y)

K (z , z)
dP(z), x , y ∈ X ,

where, whenever K (z , z) = 0, by convention we define
K (x , z)K (z , y)/K (z , z) = 0 for all x , y ∈ X.



Proof. Since L2(X ;PK ) is a Hilbert space and LP,K is a bounded
linear map, by Theorem 17 it follows that HP is a RKHS in FX ,
isometrically isomorphic to the orthogonal complement of
ker LP,K ⊆ L2(X ;PK ), and its norm is given by

‖g‖HP
:= min

{
‖λ‖L2(X ;PK ) | LP,Kλ = g

}
, g ∈ HP .

Let
X0 := {x ∈ X | K (x , x) = 0},

and let us define ux : X → F by

ux(y) :=

{
K(y ,x)
K(y ,y) , y ∈ X \ X0,

0, y ∈ X0.

From the Schwarz Inequality for the kernel K , it follows that if
x ∈ X0 then K (x , y) = 0 for all y ∈ X . This shows that ux = 0 for
all x ∈ X0.



For each x ∈ X , by the Schwarz inequality and the fact that P is a
probability measure we have∫

X
|ux(y)|2K (y , y) dP(y) =

∫
X\X0

|K (y , x)|2

K (y , y)
dP(y)

≤
∫
X\X0

K (y , y)K (x , x)

K (y , y)
dP(y)

= K (x , x)P(X \ X0) <∞,

hence, ux ∈ L2(X ,PK ). Then, taking into account that
K (x , y) = 0 for all y ∈ X0 and all x ∈ X , it follows that, for each
λ ∈ L2(X ,PK ) and x ∈ X , we have

(LP,Kλ)(x) =

∫
X
λ(y)K (x , y) dP(y) =

∫
X\X0

λ(y)K (x , y)dP(y)

=

∫
X\X0

λ(y)
K (y , x)

K (y , y)
K (y , y)dP(y)

=

∫
X
λ(y)ux(y)K (y , y) dP(y) = 〈λ, ux〉L2(X ,PK ).



In conclusion, ux is exactly the representative for the functional
evxLP,K so, by Theorem 17 the kernel of HP is

KP(x , y) = 〈uy , ux〉L2(X ,PK )

=

∫
X
uy (z)ux(z)K (z , z)dP(z)

=

∫
X\X0

uy (z)ux(z)K (z , z) dP(z)

and, using the convention that K (x , z)K (z , y)/K (z , z) = 0
whenever K (z , z) = 0 and for arbitrary x , y ∈ X ,

=

∫
X

K (x , z)K (z , y)

K (z , z)
dP(z).



The first step in our enterprise is to find error bounds for
approximations of functions in the reproducing kernel Hilbert space
H in terms of distributional finite linear combinations of functions
of type Kx .

Theorem
With notation and assumptions as before, let λ ∈ L2(X ;PK ) and
f ∈ H. For each n ∈ N and δ > 0, consider the set

An,δ :=
{

(x1, . . . , xn) ∈ X n |
∥∥f − 1

n

n∑
i=1

λ(xi )Kxi

∥∥
H ≥ δ

}
. (7.3)

Then, letting Pn denote the product probability measure on X n

and defining the bounded linear operator LP,K as in (7.1), we have

Pn(An,δ) ≤
1

δ2
‖f − LP,Kλ‖2

H +
1

nδ2

(
‖λ‖2

L2(X ;PK ) − ‖LP,Kλ‖
2
H

)
.

Compare with Theorem 8 and Theorem 11 of Kon-Raphael.



Proof. By Proposition 45, the Bochner integral
∫
X λ(x)Kx dP(x)

exists in H and the linear operator LP,K is well-defined and
bounded. In order to simplify the notation, considering
g : X n → H the function defined by

g(x1, . . . , xn) = f − 1

n

n∑
i=1

λ(xi )Kxi , (x1, . . . , xn) ∈ X n,

observe that g is measurable and for each δ > 0 we have

An,δ = {(x1, . . . , xn) ∈ X n | ‖g(x1, . . . , xn)‖ ≥ δ} . (7.4)

Then we have

‖g(x1, . . . , xn)‖2 =
∥∥f − 1

n

n∑
i=1

λ(xi )Kxi

∥∥2

= ‖f ‖2 − 2

n

n∑
i=1

Re〈f , λ(xi )Kxi 〉 (7.5)

+
1

n2

n∑
i=1

n∑
j=1

〈λ(xi )Kxi , λ(xj)Kxj 〉.



Having in mind the Markov-Bienaymé-Chebyshev Inequality as in
(1.1), we have to integrate ‖g‖2 with respect to the probability
product measure Pn.

Since Pn is a probability measure we have∫
X n

‖f ‖2 dPn(x1, . . . , xn) = ‖f ‖2.

On the other hand, by Fubini’s theorem and the fact that the
Bochner integral commutes with continuous linear operations, see
Theorem 38, we have∫
X n

Re〈f , λ(xi )Kxi 〉 dP
n(x1, . . . , xn) = Re〈f ,

∫
X n

λ(xi )Kxi dP
n(x1, . . . , xn)〉

= Re〈f ,
∫
X
λ(x)Kx dP(x)〉

= Re〈f , LP,Kλ〉.



Also, for each i = 1, . . . , n,∫
X n

〈λ(xi )Kxi ,λ(xi )Kxi 〉 dP
n(x1, . . . , xn)

=

∫
X n

|λ(xi )|2K (xi , xi )dP
n(x1, . . . , xn)

=

∫
X
|λ(x)|2K (x , x) dP(x),

and, for each i , j = 1, . . . , n, i 6= j ,∫
X n

〈λ(xi )Kxi ,λ(xj)Kxj 〉dP
n(x1, . . . , xn)

=

∫
X
〈λ(xi )Kxi ,

∫
X
λ(xj)Kxj dP(xj)〉dP(xi )

= 〈
∫
X
λ(x)Kx dP(x),

∫
X
λ(x)Kx dP(x)〉

= ‖
∫
X
λ(x)Kx dP(x)‖2.



Integrating both sides of (7.5) and using all the previous equalities,
we therefore have∫
X n

‖g(x1, . . . , xn)‖2 dPn(x1, . . . , xn) = ‖f ‖2 − 2

n

n∑
i=1

Re〈f ,
∫
X
λ(x)Kx dP(x)〉

+
1

n2

n∑
i=1

n∑
i 6=j=1

‖
∫
X
λ(x)Kx dP(x)‖2 +

1

n2

n∑
i=1

∫
X
|λ(x)|2K (x , x)dP(x)

= ‖f ‖2 − 2Re〈f ,
∫
X
λ(x)Kx dP(x)〉+

n − 1

n
‖
∫
X
λ(x)Kx dP(x)‖2

+
1

n

∫
X
|λ(x)|2K (x , x) dP(x)

=

∥∥∥∥f −∫
X
λ(x)Kx dP(x)

∥∥∥∥2

+
1

n

(∫
X
|λ(x)|2K (x , x) dP(x)− ‖

∫
X
λ(x)Kx dP(x)‖2

)
= ‖f − LP,Kλ‖2 +

1

n

(∫
X
|λ(x)|2K (x , x) dP(x)− ‖LP,Kλ‖2

)
.



Finally, in view of the Markov-Bienaymé-Chebyshev Inequality as in
(1.1), when X is replaced by X n and P by Pn, and taking into
account the previous equality and (7.4), we get

Pn(An,δ) ≤
1

δ2

∫
X n

‖g(x1, . . . , xn)‖2 dPn(x1, . . . , xn)

=
1

δ2
‖f − LP,Kλ‖2 +

1

nδ2

(
‖λ‖2

L2(X ;PK ) − ‖LP,Kλ‖
2

)
,

which is the required inequality.



As with the special case of kernel embeddings, for which λ = 1,
see Smola et al. [17], we may use the bound in Theorem 47 to
obtain a statement of convergence in probability.

Theorem (Convergence in Probability of Projections)

Let X , P, K, and H be as in Theorem 47. For each sequence
x = (xi )i ∈ XN and each n ∈ N, let πnx denote the orthogonal
projection of H onto span{Kxi}ni=1. Let f ∈ H and, for each δ > 0
and n ∈ N, define

Bn,δ := {(x1, . . . , xn) ∈ X n | ‖f − πnx f ‖ ≥ δ} .



Theorem
Then, for each δ > 0

lim sup
n→∞

Pn(Bn,δ) ≤
1

δ2
dH(f ,HP)2,

where dH(f ,HP) = infg∈HP
‖f − g‖.

In particular, if f belongs to HP
H

, the closure of HP with respect
to the topology of H, then

lim
n→∞

Pn(Bn,δ) = 0.



Proof. Let λ ∈ L2(X ,PK ) and fix δ > 0, arbitrary. Then

‖f − πnx f ‖ ≤

∥∥∥∥∥f − 1

n

n∑
i=1

λ(xi )Kxi

∥∥∥∥∥ , (7.6)

hence, with notation as in (7.3), we have Bn,δ ⊆ An,δ. By Theorem
47, this implies

Pn(Bn,δ) ≤
1

δ2
‖f − LP,Kλ‖2 +

1

nδ2

[
‖λ‖2

L2(X ,PK ) − ‖LP,Kλ‖
2
]
.

Therefore,

lim sup
n→∞

Pn(Bn,δ) ≤ lim sup
n→∞

[
1

δ2
‖f − LP,Kλ‖2

H +
1

nδ2

(
‖λ‖2

L2(X ,PK ) − ‖LP,Kλ‖
2
H

)]
=

1

δ2
‖f − LP,Kλ‖2

H .

Thus, since the left-hand side is independent of λ,

lim sup
n→∞

Pn(Bn,δ) ≤ inf
λ∈L2(X ,PK )

1

δ2
‖f − LP,Kλ‖2

H =
1

δ2
dH(f ,HP)2.

In particular, if f belongs to HP
H

, then dH(f ,HP) = 0.



In fact, by noting that ‖f − πnx f ‖, unlike
∥∥f − 1

n

∑n
i=1 λ(xi )Kxi

∥∥, is
monotonically nonincreasing with respect to n by Theorem 42, we
can strengthen the preceding statement to almost certain
convergence after passing to a single measure space.
Firstly, recall that, e.g. see [3, Proposition 10.6.1], the countably
infinite product space XN equipped with the smallest σ-algebra
rendering each projection map Xi : XN → X measurable admits a
unique probability measure PN such that the projection maps are
independent random variables with distribution P.



Lemma
Let X , P, K, and H be as in Theorem 47 and f ∈ H. For each
δ > 0 define

Sn,δ :=
{
x = (xk)∞k=1 ∈ XN | ‖f − πnx f ‖ ≥ δ

}
, n ∈ N,

and

Sδ :=
{
x = (xk)∞k=1 ∈ XN | ∀N ∈ N, ∃n ≥ N, ‖f − πnx f ‖ ≥ δ

}
(7.7)

=
⋂
N∈N

⋃
n≥N

Sn,δ.

Then,

PN(Sδ) ≤
1

δ2
dH(f ,HP)2,

and, consequently, if f ∈ HP
H

, then

PN(Sδ) = 0.



Proof. Observe that for each n,m ∈ N such that n > m,
‖f − πnx f ‖ ≤ ‖f − πmx f ‖, for each x ∈ XN, and hence Sn,δ ⊆ Sm,δ
for each δ > 0. Then,

Sδ =
⋂
N∈N

⋃
n≥N

Sn,δ =
⋂
N∈N

SN,δ,

hence, for any λ ∈ L2(X ,PK ),

PN(Sδ) ≤ inf
N∈N

PN(SN,δ) ≤
1

δ2
‖f − LP,Kλ‖2

H,

since PN is monotone and Sδ ⊆ SN,δ for all N ∈ N.



Theorem (Almost Certain Convergence of Projections)

Let X ,P,K ,H be as in Theorem 47 and suppose HP is dense in
H. Then, for each f ∈ H,

PN
({

x ∈ XN | πnx f −→n f
})

= 1,

hence,

PN
({

x ∈ XN | ∀f ∈ H, πnx f −→n f
})

= 1.



Proof. Let f ∈ H. With the same sets Sδ defined in (7.7),{
x ∈ XN | πnx f 6→ f

}
=
{
x ∈ XN | ∃δ > 0, ∀N ∈ N,∃n ≥ N, ‖f − πnx f ‖ ≥ δ

}
=
⋃
δ>0

Sδ.

Observe further that Sδ ⊆ Sδ′ whenever δ > δ′, and for each δ > 0
there exists m ∈ N such that δ > 1/m, so that{

x ∈ XN | πnx f 6−→n f
}

=
⋃

0<δ≤1

Sδ =
⋃
m∈N

S1/m

thus

PN
({

x ∈ XN | πnx f 6−→n f
})
≤
∑
m∈N

PN(S1/m) =
∑
m∈N

0 = 0.



Since H is separable let D be a countable dense subset of H.
Since each πnx is a continuous linear operator with operator norm
1, πnx f → f for all f ∈ H iff πnx f → f for all f ∈ D. Thus by the
countable subadditivity of PN,

PN
({

x ∈ XN | ∃f ∈ H, πnx f 6−→n f
})

= PN
({

x ∈ XN | ∃f ∈ D, πnx f 6−→n f
})

= PN

(⋃
f ∈D

{
x ∈ XN | πnx f 6−→n f

})
≤
∑
f ∈D

PN
({

x ∈ XN | πnx f 6−→n f
})

= 0.



In summary, for a given probability measure P under the
assumption that it renders the space HP , the image of LP,K , dense
in H, a sequence of points sampled independently from P yields a
uniqueness set with probability 1.
As a final result, in the next proposition we show a sufficient
condition, valid for many applications, when this assumption holds.

Proposition

Let X be a topological space, P a Borel probability measure on X ,
H ⊆ FX a RKHS with measurable kernel K , and let PK , LP,K and
HP defined as in Definition 44, (7.1), and (7.2), respectively.
Suppose that K is continuous on X , that H ⊆ L2(X ;PK ), and
that P is strictly positive on any nonempty open subset of X .
Then HP is dense in H.



Proof. Let f ∈ H, f ⊥ HP . That is, for each λ ∈ L2(X ;PK ), we
have

〈f , LP,Kλ〉H = 〈f ,
∫
X
λ(x)Kx dP(x)〉 = 0.

Then noting the fact that
∫
λ(x)Kx dP(x) is a Bochner integral

and hence, by Theorem 38, it commutes with inner products,

0 = 〈f ,
∫
X
λ(x)Kx dP(x)〉 =

∫
X
λ(y)〈f ,Kx〉 dP(x) =

∫
λ(x)f (x) dP(x).

By assumption, f ∈ H ⊆ L2(X ;PK ), so we can take λ = f to
obtain ∫

|f (x)|2 dP(x) =

∫
X
f (x)f (x) dP(x) = 0.

This implies that f = 0 P-almost everywhere, i.e. the set
f −1(F \ {0}) has zero P measure.
Since K is continuous by assumption, by Theorem 19 each f ∈ H is
continuous hence f −1(F \ {0}) is an open subset of X . But, since
P is assumed strictly positive on any nonempty open set, it follows
that f −1(F \ {0}) must be empty, hence f = 0 identically.



Example: Uniform distribution on a compact interval

Let (µj)j∈Z ∈ l1(Z) be such that µj > 0 for all j ∈ Z and denote
µ :=

∑
j∈Z µj . For each j ∈ Z define

φj : [−π, π]→ C, φj(t) := eiπjt , t ∈ [−π, π],

and consider the Hilbert space

H =

∑
j∈Z

cjφj |
∑
j∈Z

|cj |2

µj
<∞

 ,

with the inner product

〈
∑
j∈Z

cjφj ,
∑
j∈Z

djφj〉 =
∑
j∈Z

cjdj
µj

.



Then {√µjφj}j∈Z is an orthonormal basis of H and, for an
arbitrary function f ∈ H, we have the Fourier representation

f (t) =
∑
j∈Z

cjφj(t), t ∈ [−π, π], (8.1)

with coefficients {cj}j∈Z subject to the condition

‖f ‖2
H :=

∑
j∈Z

|cj |2

µj
<∞, (8.2)

where the convergence of the series from (8.1) is at least
guaranteed with respect to the norm ‖ · ‖H. However, for any
m ∈ N0 and t ∈ [−π, π], by the Cauchy inequality we have

∑
|j |≥m

|cjφj(t)| ≤
(∑
|j |≥m

|cj |2

µj

)1/2(∑
|j |≥m

µj
)1/2 −−−−→

m→∞
0,

hence the convergence in (8.1) is absolutely and uniformly on
[−π, π], in particular f is continuous.



By (??) H has the reproducing kernel

K (s, t) =
∑
j∈Z

µje
iπj(s−t) =

∑
j∈Z

µjφj(s)φj(t), (8.3)

and the convergence of the series is guaranteed at least pointwise.
In addition, for any t ∈ [−π, π] we have

K (t, t) =
∑
j∈Z

µj |φj(t)|2 =
∑
j∈Z

µj = µ,

and hence the kernel K is bounded. In particular, this implies that,
actually, the series in (8.3) converges absolutely and uniformly on
[−π, π], hence the kernel K is continuous on [−π, π]× [−π, π].
That is, K (s, t) is given by κ(s − t) where κ : R→ C is a
continuous function with period 2π whose Fourier coefficients
(µj)j∈Z are all positive and absolutely summable.



Let P be the normalized Lebesgue measure on [−π, π],
equivalently, the uniform probability distribution on [−π, π], and
observe that {φj}j∈Z is an orthonormal basis of the Hilbert space
LP [−π, π]. With notation as in (??), we have
dPK (t) = K (t, t)dP(t) = µdP(t) hence L2

PK
[−π, π] = L2

P [−π, π]
with norms differing by multiplication with µ > 0. In particular,
{φj/
√
µ}j∈Z is an orthonormal basis of the Hilbert space

L2
PK

[−π, π].



We consider now the nonexpansive operator
LP,K : L2

PK
[−π, π]→ H defined as in (7.1). Then, for any j ∈ Z

and t ∈ [−π, π], we have

(LP,Kφj)(t) =

∫ π

−π
φj(s)K (t, s)dP(s) =

∫ π

−π
φj(s)

(∑
k∈Z

µkφk(t)φk(s)

)
dP(s)

=
∑
k∈Z

µkφk(t)

∫ π

−π
φj(s)φk(s) dP(s) =

∑
k∈Z

µkφk(t)δjk = µjφj(t),

where, the series commutes with the integral either by the Bounded
Convergence Theorem for the Lebesgue integral, or by using the
uniform convergence of the series and the Riemann integral.



Similarly, the Hilbert space HP := LP,K (L2
PK

[−π, π]), as in
Proposition 46, is a RKHS, with kernel,

KP(s, t) =
1

2π

∫ π

−π

(∑
j∈Z µjφj(s)φj(z)

)(∑
l∈Z µlφl(z)φl(t)

)
∑

j∈Z µj
dz

=
1

µ

∑
j∈Z

∑
l∈Z

µjµlφj(s)φl(t)
1

2π

∫ π

−π
φj(z)φl(z) dz

=
1

µ

∑
j∈Z

∑
l∈Z

µjµlφj(s)φl(t)δjl =
∑
j∈Z

µ2
j

µ
φj(s)φj(t).

Thus, letting µ′j :=
µ2
j

µ ≤ µj , j ∈ Z and noting that∑
j∈Z µ

′
j ≤

∑
j∈Z µj <∞, we have

HP =

∑
j∈Z

cjφj |
∑
j∈Z

|cj |2

µ′j
<∞

 =

∑
j∈Z

cjφj |
∑
j∈Z

|cj |2

µ2
j

<∞

 .

In particular, HP is dense in H since both contain span{φj}j∈Z as
dense subsets, but this follows from the more general statement in
Proposition 52 as well.



Let now λ ∈ L2
PK

[−π, π] = L2
P [−π, π] be arbitrary, hence

λ =
∑
j∈Z

λjφj ,
∑
j∈Z
|λj |2 <∞, ‖λ‖2

L2
PK

[−π,π] =
1

µ

∑
j∈Z
|λj |2.

Then,

(LP,Kλ)(t) =
(
LP,K

∑
j∈Z

λjφj
)
(t) =

∑
j∈Z

λjµjφj(t), t ∈ [−π, π],

and, consequently,

‖LP,Kλ‖2
H =

∑
j∈Z

|λj |2µ2
j

µj
=
∑
j∈Z

µj |λj |2.

Also, for arbitrary f ∈ H as in (8.1) and (8.2), we have

‖f − LP,Kλ‖2
H =

∥∥∑
j∈Z

(cj − λjµj)φj
∥∥2

H =
∑
j∈Z

|cj − λjµj |2

µj
.



Let (xn)n∈N be a sequence of points in [−π, π]. By Theorem 47
and taking into account of the inequality (7.6), for any N ∈ N and
δ > 0 we have

PN
(
‖f − πNx f ‖H ≥ δ

)
≤ PN

(
‖f − 1

N

N∑
n=1

λ(xn)Kxn‖H ≥ δ
)

(8.4)

≤ 1

δ2

∑
j∈Z

|cj − λjµj |2

µj
+

1

Nδ2

(∑
j∈Z

(µ− µj)|λj |2
)
.

On the other hand, we observe that in the inequality (8.4) the left
hand side does not depend on λ and hence, for any ε > 0 there
exists λ ∈ L2

PK
[−π, π] such that

PN
(
‖f − πNx f ‖H ≥ δ

)
<
ε

2
+

1

Nδ2

(∑
j∈Z

(µ− µj)|λj |2
)
,

and then, for sufficiently large N we get

PN
(
‖f − πNx f ‖H ≥ δ

)
< ε.



In particular, if f ∈ HP , that is, the inequality (8.2) is replaced by
the stronger one ∑

j∈Z

|cj |2

µ2
j

<∞,

we can choose λj = cj/µj , j ∈ Z, and we have λ ∈ L2
PK

[−π, π],
hence

PN
(
‖f − πNx f ‖H ≥ δ

)
≤ 1

Nδ2

(∑
j∈Z

(µ− µj)|cj |2

µ2
j

)
.



For example, this is the case for f = φk for some k ∈ Z, hence
cj = δj ,k , j ∈ Z, and letting λ = φk/µk , hence λj = δj ,k/µj , j ∈ Z,
we have f = LP,Kλ and hence,

PN(‖φk − πNx φk‖ ≥ δ) ≤ 1

Nδ2µ2
k

∑
Z3j 6=k

µj .

This shows that, the larger µk is, the faster φk will be
approximated but, since µj −→

j
0, φjs cannot be approximated

uniformly, in the sense that there does not exist a single N to make
each

∥∥φj − πNx φj∥∥H bounded by the same δ with the same
probability η.
This analysis can be applied more generally to kernels that admit
an expansion analogous to (8.3) under basis functions (φj)j which
constitute a total orthonormal set in L2(X ;PK ), e.g. as guaranteed
by Mercer’s Theorem [15, Theorem 2.30].



Example: The Hardy space H2(D)

We consider the open unit disc in the complex plane
D = {z ∈ C | |z | < 1} and the Szegö kernel

K (z , ζ) =
1

1− zζ
=
∞∑
n=0

znζ
n
, z , ζ ∈ D, (8.5)

where the series converges absolutely and uniformly on any
compact subset of D. The RKHS associated to K is the Hardy
space H2(D) of all functions f : D→ C that are holomorphic in D
with power series expansion

f (z) =
∞∑
n=0

fnz
n, (8.6)

such that the coefficients sequence (fn)n is in `2
C(N0).



The inner product in H2(D) is

〈
∞∑
n=0

fnz
n,

∞∑
n=0

gnz
n〉 =

∞∑
n=0

fngn,

with norm

‖
∞∑
n=0

fnz
n‖2 =

∞∑
n=0

|fn|2.

For each ζ ∈ D we have

‖Kζ‖ =
( ∞∑
n=0

|ζ|2n
)1/2

=
1√

1− |ζ|2
,

hence the kernel K is unbounded.



We consider P the normalized Lebesgue measure on D, that is, for
z = x + iy = reiθ we have

dP(z) =
1

π
dA(x , y) =

r

π
dθ dr ,

hence,

dPK (z) =
r

π(1− r2)
dθ dr .

Then, L2(D;PK ) is contractively embedded in L2(D;P).



Further on, in view of Proposition 46 and (8.5), for any z , ζ ∈ D
we have

KP(z , ζ) =
1

π

∫ 1

0

∫ 2π

0

r(1− r2)

(1− zre−iθ)(1− ζreiθ)
dθ dr (8.7)

=
1

π

∫ 1

0

∫ 2π

0

∞∑
n=0

∞∑
k=0

(1− r2)rn+k+1ei(n−k)θznζ
k
dθ dr

which, by using twice the Bounded Convergence Theorem for the
Lebesgue measure, equals

=
∞∑
n=0

∞∑
k=0

1

π

∫ 1

0

∫ 2π

0
(1− r2)rn+k+1ei(n−k)θ dθ drznζ

k

=
∞∑
n=0

4

∫ 1

0
(1− r2)r2n+1 drznζ

n

=
∞∑
n=0

znζ
n

(n + 1)(n + 2)
.

This shows that the RKHS H2
P(D) induced by KP consists of all

functions h that are holomorphic in D with power series
representation h(z) =

∑∞
n=0 hnz

n and such that
∞∑
n=0

(n + 1)(n + 2)|hn|2 <∞.

In particular, an orthonormal basis of H2
P(D) is

{zn/
√

(n + 1)(n + 2)}n≥0 and hence H2
P(D) is dense in the Hardy

space H2(D).



In order to calculate the operator LP,K : L2(D;PK )→ H2(D), let
λ ∈ L2(D;PK ) be arbitrary, that is, λ is a complex valued
measurable function on D such that

‖λ‖2
L2(D;PK ) =

1

π

∫ 1

0

∫ 2π

0

|λ(reiθ)|2r
1− r2

dθ dr <∞. (8.8)

Then, in view of Proposition 39, we have

(LP,Kλ)(z) =
1

π

∫ 1

0

∫ 2π

0
λ(reiθ)K (z , reiθ)r dθ dr (8.9)

=
1

π

∫ 1

0

∫ 2π

0
λ(reiθ)

∞∑
n=0

znrn+1e−inθ dθ dr

which, by the Bounded Convergence Theorem, equals

=
∞∑
n=0

1

π

∫ 1

0

∫ 2π

0
λ(reiθ)rn+1e−inθ dθ drzn =

∞∑
n=0

λnz
n,

where, for each integer n ≥ 0 we denote

λn =
1

π

∫ 1

0

∫ 2π

0
λ(reiθ)rn+1e−inθ dθ dr . (8.10)



Observing that, letting φn(z) :=
√
n + 1zn, for all integer n ≥ 0

and z ∈ D, the set {φn}n≥0 is orthonormal in L2(D;P), it follows
that λn = 〈λ, φn〉L2(D;P) for all integer n ≥ 0 and, hence, (λn)n≥0

is the weighted sequence of Fourier coefficients of λ with respect
to the system of orthonormal functions {φn}n≥0 in L2(D;P). On
the other hand, since L2(D;PK ) is contractively embedded in
L2(D;P), this shows that LP,K is the restriction to L2(D;PK ) of a
Bergman type weighted projection of L2(D;P) onto a subspace of
the Hardy space H2(D), that happens to be exactly H2

P(D).



Finally, let f ∈ H2(D) with power series representation as in (8.6)
and let λ ∈ L2(D;PK ) with norm given as in (8.8). Then, by
Theorem 47 and taking into account of the inequality (7.6), for
any N ∈ N and δ > 0 we have

PN
(
‖f − πNz f ‖H2(D) ≥ δ

)
≤ PN

(
‖f − 1

N

N∑
i=1

λ(zi )Kzi‖H2(D) ≥ δ
)

(8.11)

≤ 1

δ2

∞∑
n=0

|fn − λn|2 +
1

Nδ2

(
‖λ‖2

L2(D;PK ) −
∞∑
n=0

|λn|2
)
,

where z = (zi )i∈N denotes an arbitrary sequence of points in D and
πNz denotes the projection of H2(D) onto span{Kzi | i = 1, . . . ,N}.



By exploiting the fact that the left hand side in (8.11) does not
depend on λ and the density of H2

P(D) in H2(D), for any ε > 0
there exists λ ∈ L2(D;PK ) such that

PN
(
‖f − πNz f ‖H2(D) ≥ δ

)
≤ ε

2
+

1

Nδ2

(
‖λ‖2

L2(D;PK ) −
∞∑
n=0

|λn|2
)
,

and hence, for N sufficiently large, we have

PN
(
‖f − πNz f ‖H2(D) ≥ δ

)
≤ ε.



Let us consider now the special case when the function f ∈ H2
P(D),

that is, with respect to the representation as in (8.6), we have the
stronger condition

∞∑
n=0

(n + 1)(n + 2)|fn|2 <∞.

In this case, letting

λ(z) :=
∞∑
n=0

(n + 1)(n + 2)(1− |z |2)fnz
n, z ∈ D,

calculations similar to (8.7) and (8.9) show that

1

π

∫ 1

0

∫ 2π

0

|λ(reiθ)|2r
1− r2

dθ dr =
∞∑
n=0

(n + 1)(n + 2)|fn|2 <∞.



Then λ ∈ L2(D;PK ), and

(LP,Kλ)(z) =
1

π

∫ ∞
0

∫ 2π

0
λ(reiθ)K (z , reiθ)r dθ dr =

∞∑
n=0

fnz
n = f (z), z ∈ D,

hence, the first term in the right hand side of (8.11) vanishes and
we get

PN
(
‖f − πNz f ‖H2(D) ≥ δ

)
≤ 1

Nδ2

∞∑
n=0

(n2 + 3n + 1)|fn|2.

For example, if f (z) = zn for some integer n ≥ 0, then

PN
(
‖f − πNz f ‖H2(D) ≥ δ

)
≤ n2 + 3n + 1

Nδ2
,

showing that better approximations are obtained for smaller n than
for bigger n.
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