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A medical treatment scenario

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72

Just recommend pills? Cheaper and more effective!
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A medical treatment scenario

" »))
Yy,

From our intervention (making all patients take a treatment):
m P(Y = cured|do(pills)) = 0.64
m P(Y = cured|do(surgery)) = 0.75

What went wrong?
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Observation vs intervention

Conditioning from observation: E(Y|A = a) =), E(y|a, z)p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E(Y (%) = E(y|a, z)p(z)

PIloSssl B
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From our intervention (making all patients take a treatment):
m P(Y = cured|do(pills)) = 0.64
®m P(Y = cured|do(surgery)) = 0.75

4/37



Outline

Talk structure:

m Average treatment effect (ATE)
...via kernel mean embedding (marginalization)
m Conditional average treatment effect (CATE)
via kernel conditional mean embedding

m Average treatment on treated

m Mediation effect, dynamic treatment effect
m Proxy methods
...when covariates are hidden

Advantages of the approach:

m Treatment A, covariates X, etc can be multivariate, complicated...
m Simple, robust implementation;
m Strong statistical guarantees under general smoothness assumptions
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Key requirement: linear functions of features

All learned functions will take the form:

Option 1: Finite dictionaries of learned neural net features

Xu, Chen, Srinivasan, de Freitas, Doucet, G. “Learning Deep Features in Instrumental
Variable Regression”. (ICLR 21)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded
Bandit Policy Evaluation”. (NeurIPS 21)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), p(z))g, = k(zi, T)

Kernel is feature dot product.
Primary focus of this talk.
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Building block: kernel ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

¥ = argmin (Z(yi—<7,¢($¢)>H)2+>\H“YH%>-

TEH 1=1
Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)
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Building block: kernel ridge regression
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n
4 = argmin (Z(yi—<%<p(w¢)>a)2+>\HvH%>-
’YEH =1

Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)

08
Solution at z: 06
n 04
Y(z) = Zaik(:z:i, z) Z 02
1=1 0
a ::(ffxx’+-AI)71§’ 0.2
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Building block: kernel ridge regression

Learn 7o(z) := E[Y|X = z] from features ¢(z;) with outcomes y;:

¥ = argmin (Z(yi—<%<p(w¢)>a)2+>\H’YH%>-

TEH 1=1
Kernel as feature dot product:

(p(z:), p(z))g, = k(zi, T)

Solution at z (as weighted sum of y) 08

0.6

n 0.4

= Z yzﬂi(x) % 02

i=1 N .

B(z) = (Kxx + M) kxo o
(Kxx)ij = k(zi, 25) e 4 2 o 2 4 6 s

(kxz); = k(i ) .



A reminder: the RKHS norm
Eigendecomposition of k(z, z') wrt probability measure p(z),

Aeeg(z) = /k(:v,w')ee(w’)p(xl)dml /ei(m)ej(:v)p(l‘)dm - {(1) :;j
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A reminder: the RKHS norm

Eigendecomposition of k(z, z') wrt probability measure p(z),

1 i=j

Aeeg(z) = /k(:c,:r’)eg(a:’)p(x’)dm’ /ei(m)ej(:c)p(a:)dm = {O i

We can write -
k(z,z') = Z)\geg(:z:)eg(m'),
=1

which converges in Ly(p).

Warning: for RKHS, need absolute and uniform convergence, guaranteed via Mercer’s
theorem under conditions on p(z) and k(z.z').
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A reminder: the RKHS norm

For two functions f, g in Ly(p),

= Zﬂeg(x) g(l‘) = Z gmem(m);
=1

m=1

dot product is

F ) = [ F@9(@)p(a)de =Y fude
=1
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For two functions f, g in Ly(p),

= Zﬂeg(a:) g(l‘) = Z gmem(m);
=1

dot product is
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Dot product in A has roughness penalty,
o0 7 oa oo 72
. feGe 2 _ i

9/37



A reminder: the RKHS norm

For two functions f, g in Ly(p),

= Zﬂeg(a:) g(l‘) = Z gmem(m);
=1

dot product is
F ) = [ F@9(@)p(a)de =Y fude
Dot product in A has roughness penalty,

B oo @ 2 '] ]’Zz
oo =250 IR =205

Define smooth subspace H¢ — H — La(p) as

® fobe
<f,g>'Hc:Z)\c c> 1.
=1 "¢
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KRR: consistency in RKHS norm

Assume problem well specified

m Denote: 79 € H¢ where H° C H, ¢ € (1,2]
Larger ¢ = smoother 7y = easier problem.

m Eigenspectrum decay of input feature covariance, 7; ~ 370 b >1
Larger b — easier problem

[A] Fischer, Steinwart (2020). Sobolev norm learning rates for regularized least-squares algorithms.
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KRR: consistency in RKHS norm

Assume problem well specified

m Denote: 79 € H¢ where H° C H, ¢ € (1,2]
Larger ¢ = smoother 7y = easier problem.

m Eigenspectrum decay of input feature covariance, 7; ~ 370 b >1
Larger b — easier problem

Consistency [A, Theorem 1.ii]
. _ 1l c=1
17 —0llyy = Op (n ““”’) ,
Best rate is Op(n~1/4) for c =2, b — .

[A] Fischer, Steinwart (2020). Sobolev norm learning rates for regularized least-squares algorithms.
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Observed covariates: (conditional) ATE

Kernels (Biometrika 2023):

ar (iv > econ > arXiv:2010.04855

NN features (ICLR 2023):

Search,

Help | Adv
Economics > Economet)

ar (1v > ¢s > arXiv:2210.06610

Computer Science > Machine Learning

[Submited on 10 Oct 2020 1), lat revised 23 Aug 2022 (i vrsion, vo)] Pcbmicted on 12 0ct 2022]

Kernel Methods for Causal Functions: Dose, Heterogeneous, A Neural Mean Embedding Approach for Back-door and
and Incremental Response Curves Front-door Adjustment

Liyuan Xu, Arthur Gretton

Rahul Singh, Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:
https://github.com/1iyuan9988/DeepFrontBackDoor/
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Kernels (Biometrika 2023):

ar (iv > econ > arXiv:2010.04855

Search,

Help | Adva
Economics > Econometrics.
[submitted on 10 Oct 2020 (v1), last revised 23 Aug 2022 (this version, v6)]

Kernel Methods for Causal Functions: Dose, Heterogeneous,
and Incremental Response Curves

Rahul Singh, Liyuan Xu, Arthur Gretton

NN features (ICLR 2023):

ar \/\1V > ¢s > arXiv:2210.06610

Computer Science > Machine Learning
[Submitted on 12 Oct 2022]

A Neural Mean Embedding Approach for Back-door and
Front-door Adjustment

Liyuan Xu, Arthur Gretton

Code for NN and kernel causal estimation with observed covariates:

https://github.com/1liyuan9988/DeepFrontBackDoor/

12/37


https://github.com/liyuan9988/DeepFrontBackDoor/

Average treatment effect

Potential outcome (intervention):
B(Y'®) = [ B(yla,2)dp(z)

(the average structural function; in epidemiology, for continuous a,

the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y () 1L A|X. (3) Overlap.

Example: US job corps, training
for disadvantaged youths: °

m A: treatment (training hours)

m Y: outcome (percentage
employment)

m X: covariates (age, education,
marital status, ...)

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the 13/37
Counterfactual and Graphical Approaches to Causality



Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Yo(a,z) := E[Y|a, z]

Assume we have:

m covariate features p(z) with
kernel k(z, z') @

m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

Yo(a,z) := E[Y|a, z]

Assume we have:
m covariate features p(z) with
kernel k(z, z') @
m treatment features ¢(a) with /
kernel k(a, a’)

(argument of kernel/feature map indicates
feature space)

We use outer product of features ( = product of kernels):
¢(z,a) =p(a)®p(z)  K([a,z][a,2]) = k(a, a')k(z, ')
Ridge regression solution:

’7(1"1 a‘) = Z ;Bi(a'x CIJ), ﬂ(a’; IE) = [KAA © KXX + AI]_I KAa © K&y
=1



ATE (dose-response curve)
Well specified setting:

Y(a,z) = E[Y|a, z].
ATE as feature space dot product:

655 (a) = Ep[10(a, X)]

=Ep (10, p(a) ® 9(X)) @
o
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ATE (dose-response curve)
WEell specified setting:

70(‘17 IL’) = E[Y’a7 (I)]
ATE as feature space dot product:

85 "(a) = Ep[yo(a, X)]
=Ep (70, 9(a) ® p(X))

= (7, pp ®¢p(a))
~—
Epy(X)

Gl

Feature map of probability P,

pp =[..Epfpi(X)].. ]
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ATE (dose-response curve)

Well specified setting:
Y(a,z) = E[Y|a, z].
ATE as feature space dot product:

65"%(a) = Ep[yo(a, X))
=Ep (’)’0, ‘P(a) ® ‘P(X)>

= (70, kp ®¢(a))
—~
Epp(X)

Gl

For characteristic kernels, up is injective.

Consistency: [|2p — up|l% = Op(n /%)
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ATE: empirical estimate and consistency

Empirical estimate of ATE:

n

~ 1
GATE(g) = - Z YT (Kps © Kxx +nA) YKo © Kxz,)
i=1

Singh, Xu, G (2022a), Kernel Methods for Causal Functions: Dose-Response Curves and Heterogeneous
Treatment Effects.
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ATE: empirical estimate and consistency

Empirical estimate of ATE:

n

. 1
6ATE (o) = - S Y (Kun © Kxx +nAI) " (Kaq © Kxa,)
1=1

Consistency:
1 _c—

N 1 1
GATE _ H,OATEH = Op <n 2 c+1/b>
¢}

Follows from consistency of ip and 7, under:

m smoothness assumption 7, € H€, ¢ € (1, 2]

m eigenspectrum decay of input feature covariance, n; ~ j b > 1.

Singh, Xu, G (2022a), Kernel Methods for Causal Functions: Dose-Response Curves and Heterogeneous
Treatment Effects.
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ATE: example

US job corps: training for dis-
advantaged youths:

m X: covariate/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (percent
employment)

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.

Singh, Xu, G (2022a).
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ATE: results

JE —_——

g 451

>
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% 40
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g —— RKHS
35 —— DML2

0 500 1000 1500 2000

Class-hours

m First 12.5 weeks of classes confer employment gain: from 35% to 47%.
m [RKHS] is our §4TE(q)
| Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.
Singh, Xu, G (2022a)
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Conditional average treatment effect

Learned conditional mean:

E[Y]a,z,v] &~ 70(a,z,v)
= (70, 0(a) ® p(z) ® p(v)) .

Conditional ATE @/

0945 (a, v)

=EB(Y@|V =)
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Conditional average treatment effect

Learned conditional mean:

E[Y]a,z,v] &~ 70(a,z,v)
= (70, 0(a) ® p(z) ® p(v)) .

Conditional ATE

HEATE(G,,'U)
=E(Y |V =)
= Ep ((70, p(a) ® p(X) ® p(V)) [V = v)
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Conditional average treatment effect

Learned conditional mean:
E[Y|a,z,v] ~ 7(a,z,v)
= (70, p(a) ® p(z) ® p(v)) -
Conditional ATE

094 (a, v)

=EB(YW|V =)

=Ep ((10,90(a) @ p(X) @ p(V)) |V = v)
=..7

How to take conditional expectation?

Density estimation for p(X|V = v)? Sample from p(X|V = v)?
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Conditional average treatment effect

Learned conditional mean:

E[Y|a,z,v] ~ 7(a,z,v)
= (70, 9(a) ® p(z) ® p(v)) .

Conditional ATE @
GSATE( a, ’U) /

=E(Y®|V =)
=Ep ((10,p(a) ® p(X) @ p(V)) |V = v)
= (10, (@) @ Ep[p(X)|V = v] ® p(v))

J

KBX|V=y

Learn conditional mean embedding: px|v—, := Ep (¢(X)|V = v)
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Regressing from feature space to feature space

Our goal: an operator Fy : Hy —Hx such that

Eop(v) = px|v—y

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.

Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Singh, Sahani, G (2019), Kernel Instrumental Variable Regression. 20/37



Regressing from feature space to feature space

Our goal: an operator Fy : Hy —Hx such that

Eop(v) = px|v—y

Assume

Ey € span{p(z) ® p(v)} < Ey € HS(Hy, Hx)
Implied smoothness assumption:

Ep[h(X)|V =v] € Hy VheHx

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.

Grunewalder, G, Shawe-Taylor (2013) Smooth operators.

Singh, Sahani, G (2019), Kernel Instrumental Variable Regression. 20/37



Regressing from feature space to feature space

Our goal: an operator Fy : Hy —Hx such that

Eop(v) = px|v—y

Assume

Ey € span{p(z) ® p(v)} < Ey € HS(Hy, Hx)
Implied smoothness assumption:
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‘\/Q/ L%W// (/p;&?a/a&

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
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Regressing from feature space to feature space

Our goal: an operator Fy : Hy —Hx such that

Eop(v) = px|v—y

Assume

Ey € span{p(z) ® p(v)} < Ey € HS(Hy, Hx)
Implied smoothness assumption:
Ep[h(X)|V =v]€Hy VhEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
E = argminy _ [[p(z) — Be(v)ll3, + Aol Bll%s
ECHS =

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
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Singh, Sahani, G (2019), Kernel Instrumental Variable Regression. 20/37



Regressing from feature space to feature space

Our goal: an operator Fy : Hy —Hx such that

Eop(v) = px|v—v

Assume

Ey € span{p(z) ® p(v)} < Ey € HS(Hy, Hx)
Implied smoothness assumption:
Ep[h(X)|V =v]€Hy VhEHx

Kernel ridge regression from ¢(v) to infinite features ¢(z):

n
E = argmin ) | ||o(ze) = Be(w)ll3, + Aol Ellis
E€HS ;=3

Ridge regression solution:
px|v=y = Ep[p(X)|V = v] & Bp(v) = Bu(v)
=1
B(v) = [Kvv + XDV kv
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Consistency of conditional mean embedding

Assume problem well specified [B, Assumption 6.3]
Fy € HS(Hy, , Hx) € (1,2].
Larger c; = smoother 7, = easier problem.

m Eigenspectrum of ¢(v) covariance decays as 7;,; ~ g7, by > 1.

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning
[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional p(z):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007).
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Consistency of conditional mean embedding

Assume problem well specified [B, Assumption 6.3]
Fy € HS(Hy, , Hx) € (1,2].
Larger c; = smoother 7, = easier problem.

m Eigenspectrum of ¢(v) covariance decays as 7;,; ~ g7, by > 1.

Consistency [A, Theorem 2, Theorem 3|
HE‘ — EOH = Op n_%qc-ll-l_/lh
HS !
best rate is Op(n /%) (minimax)

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning

[B] Singh, Xu, G (2022a)
Earlier consistency proofs for finite dimensional p(z):

Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007).
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Consistency of CATE

Empirical CATE:

éCATE(a’ ’U)

=Y (K420 Kxx © Kyy + nA) YKo © Kxx(Kyy + 22 Ky, © Ki)

from fix|v=y
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Consistency of CATE

Empirical CATE:

éCATE(a’ ’U)

=Y (K420 Kxx © Kyy + nA) YKo © Kxx(Kyy + 22 Ky, © Ki)

from fix|v=y

Consistency: [A, Theorem 2]

N 1 c—1 _1_¢=1
||HCATE _ HgATElloo — OP (,nz HI/70 4 2 c1+1/b1> .

Follows from consistency of E and 4, under the assumptions:
€ HS(H,, Hx)
B € HE.

[A] Singh, Xu, G (2022a)
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Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

m X: confounder/context
(age, education,
marital status, ...)

m A: treatment (training
hours)

m Y: outcome (percent
employed)
m V: age

Singh, Xu, G (2022a)
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Conditional ATE: results

24

221
9201 <
48.0 AL
1813
16 ' 49.0 36.0 ——]
500 1000 1500
Class-hours

Average percentage employment Y () for class hours a, conditioned
on age v. Given around 12-14 weeks of classes:

m 16 y/o: employment increases from 28% to at most 36%.

m 22 y/o: percent employment increases from 40% to 56%.
Singh, Xu, G (2022a)

24/37



Counterfactual: average treatment on treated
Conditional mean:

E[Y|a,z] = 70(a, z)
Average treatment on treated:

QATT(a,, )

= B(y()|4 = a) @
D
o—

Empirical ATT:

64T (a, o')
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Conditional mean:
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QATT(Q,, )

= B(y*)]4A = a) A
D
—
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Counterfactual: average treatment on treated
Conditional mean:

E[Y|a,z] = 70(a, z)
Average treatment on treated:

QATT(a,, )

:E(y( )|A:a) @
=Ep ((70,0(2") ® (X)) |A = a)
=<”:),<p( ) ® Ep[p(X)|A = a]) /

HEX|A=a

Empirical ATT:

64T (a, o')
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Counterfactual: average treatment on treated
Conditional mean:

E[Y|a,z] = 70(a, z)
Average treatment on treated:

QATT(a,, )

:E(y( )|A:a) @
=Ep ((70,0(2") ® (X)) |A = a)
=<”:),<p( ) ® Ep[p(X)|A = a]) /

HEX|A=a

Empirical ATT:
éATT ( a, )

= YT (Kaa © Kxx + nA) N (Kaw © Kxx(Kaa+nAI) K a,)

from fixja=a 25/37



Mediation analysis

m Direct path from treatment A to effect Y
m Indirect path A > M - Y

m X: context

Is the effect Y mainly due to A? To M?

26/37



Mediation analysis: example
US job corps: training for dis-
advantaged youths:

m X: confounder/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (arrests) @>\\
m )M: mediator (employment) A

Yo(a,m,z) *E[Y|A=a, M =m, X = z]

Singh, Xu, G (2022b). Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects. 27/37
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Mediation analysis: example
US job corps: training for dis-
advantaged youths:

m X: confounder/context (age,
education, marital status, ...)

m A: treatment (training hours)

m Y: outcome (arrests) @>\\
m )M: mediator (employment) A

Yo(a,m,z) *E[Y|A=a, M =m, X = z]

A quantity of interest, the mediated effect:
YUY = [oo(a, M, X)AP(M|A = a, X)dB(X)

= (70, 9(2") ® Ep{pusja=a,x ® 9(X)})

Effect of intervention o/, with /(%) as if intervention were a

Singh, Xu, G (2022b). Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects. 27/37



Mediation analysis: results
Total effect:

857 (a,a')
— Ry {1 - yle Oy

2000

~ vU8g

10’ \
2 1500

>

21000

2

& 500

O

500 1000 1500 2000
Class-hours (a)

B o' = 1600 hours vs a = 480 means 0.1 reduction in arrests

Singh, Xu, G (2022b)
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Mediation analysis: results

Total effect:

857 (a,a')
— Ry {1 - yle Oy

2000—vugg
1500 \

500

Class-hours (a’)
=
o
o
o

500 1000 1500 2000
Class-hours (a)

Direct effect:

DE(a’aq

= E[ Y{a’7M(a)} _ Y{arM(a)}]

1000

Class-hours (a’)
w1
o
o

500 1000 1500 2000
Class-hours (a)

m o' — 1600 hours vs a = 480 means 0.1 reduction in arrests
m Indirect effect mediated via employment effectively zero

Singh, Xu, G (2022b)
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...dynamic treatment effect...

Dynamic treatment effect: sequence A;, A, of treatments.

Q‘ ()

m potential outcomes Y(%), y (@) y(e1,0)
m counterfactuals E(y(ai’“é)\Al = a1, Az = ap)...

(c.f. the Robins G-formula)

29/37



Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Search,

Help | Advan{
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (his version, va)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet
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Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Search
Help | Advand
Computer Science > Machine Learning

[Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Deep Proxy Causal Learning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ so/37


https://github.com/liyuan9988/DeepFeatureProxyVariable/

The proxy correction

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:
m X: unobserved confounder.
m A: treatment LR

® Y: outcome ‘pe

If X were observed (which it
isn't),

B[Y(®)] = [ B[Y|X, a]dp(X)
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The proxy correction

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:

m X: unobserved confounder.

m A: treatment
® Y: outcome
m Z: treatment proxy

m W outcome proxy

Q,
Feb = Jan
op -~ op
v O

[

or ?}
£ A

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured

confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.
Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially 31/37

Observable Dynamical Systems.



The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: unobserved confounder.

m A: treatment RRE

m Y: outcome DRI

m Z: treatment proxy \

m W outcome proxy

Structural assumption: @ @

W 1L (Z, A)| X
Y 1 Z|(A, X)

— Can recover E(Y (%)) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially 31/37
Observable Dynamical Systems.



The proxy correction (continuous)

If X were observed,

B(Y(®) = [ B(yla,2)p(z)do.

....but we do not see p(z).

Miao, Geng, Tchetgen Tchetgen (2018)
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The proxy correction (continuous)

If X were observed,

B(Y(®) = [ B(yla,2)p(z)do.

....but we do not see p(z).

Main theorem: Assume we have solved...

E(y|z, a) :/hy(w,a)p(w]z,a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

Miao, Geng, Tchetgen Tchetgen (2018)
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The proxy correction (continuous)

If X were observed,

B(Y(®) = [ B(yla,2)p(z)do.

....but we do not see p(z).

Main theorem: Assume we have solved...

E(y|z, a) :/hy(w,a)p(w]z,a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

...then average causal effect via p(w):

B™) = [ hy(a, w)p(w)du

Expressions in terms of observed quantities, can be learned from data.
Miao, Geng, Tchetgen Tchetgen (2018)
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Our solution

m Stage 1: ridge regression from ¢(a) ® ¢(z) to ¢(w)
® yields conditional mean embedding yw|q,.
m Stage 2: ridge regression from pyy|,,, and ¢(a) to y
° yields hy(w, a).
m Solved using sieves [A], kernel [B], or learned NN [cC] features

Code available for kernel and NN solutions

https://github.com/1liyuan9988/DeepFeatureProxyVariable/

[A] Deaner (2021) Proxy controls and panel data.
[B] Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G,T Muandet! (2021); Proximal Causal Learning
with Kernels: Two-Stage Estimation and Moment Restriction

[C] Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit
Policy Evaluation 33/37


https://github.com/liyuan9988/DeepFeatureProxyVariable/

Conclusions

Kernel ridge regression:
m Solution for ATE, ATT, CATE, mediation analysis, dynamic
treatment effects, proximal learning
m ...with treatment A, covariates X, V', mediator M, proxies (W, Z)
multivariate, “complicated”
m Simple, robust implementation
m Strong statistical guarantees under general smoothness assumptions

In the papers, but not in this talk:

Doubly robust estimates for discrete A, V with automatic debiasing
Elasticities

Regression to potential outcome distributions over Y (not just
E(Y(@)]..)

Instrumental variable regression
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