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Epistemological context

How to analyze complex systems: Among the current approaches to analyze
complex systems

▶ Theory of Dynamical Systems allows to analyze complex systems when the
model is known. It offers nontrivial ways to analyze dynamical systems. It
has the status of Theory. Currently, it is limited to low-dimensional models.

▶ Machine Learning is concerned with algorithms designed to accomplish a
certain task, whose performance improves with the input of more data. It
allows the analysis of some very high-dimensional complex systems on the
basis of data when the model is not even known.
Current limitations: Mostly a set of techniques and algorithms. No
Methodologies. Theory still underdeveloped. It is not clear why the
algorithms work and what is their domain of applicability.

⇝ It makes sense to combine Dynamical Systems and Machine Learning.
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Goal

Goal: Fill the gap between Machine Learning and Dynamical Systems in the
following directions

▶ Machine Learning for Dynamical Systems: how to analyze dynamical systems
on the basis of observed data rather than attempt to study them analytically
(it allows to extend the boundaries of the classical theory of dynamical
systems).

▶ Dynamical Systems for Machine Learning: how to analyze algorithms of
Machine Learning using tools from the theory of dynamical systems (allows
to give solid foundations to the existing methods and understand their true
potential and limits- identify the domain of applicability of the algorithms in
ML).
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Context

As pointed out by Steve Smale, the interaction between Dynamical Systems and
Learning Theory is an important problem1:

“Some years ago, Felipe (Cucker) and I were trying to find something
about the brain science and artificial intelligence starting from literature
on neural nets. It was in this setting that we encountered the beautiful
ideas and fast algorithms of learning theory. Eventually we were motivated
to write on the mathematical foundations of this new area of science.
I have found this arena to, with its new challenges and growing number
of applications, be exciting. For example, the unification of dynamical
systems and learning theory is a major problem. Another problem is to
develop a comparative study of useful algorithms currently available and
to give unity to these algorithms.”

1Felipe Cucker and Ding Xuan Zhou (2007), Learning Theory: An Approximation Theory
Viewpoint.
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Context

“Personal computing has developed to the point where in many cases it
ought to be easier to simulate a dynamical system and analyze the empir-
ical data, rather than attempt to study the system analytically. Indeed,
for large classes of nonlinear systems, numerical analysis may be the only
viable option. Yet the mathematical theory necessary to analyze dynami-
cal systems on the basis of observed data is still largely underdeveloped.”

J. Bouvrie and BH (2012), Empirical Estimators for Stochastically Forced Nonlinear Systems: Observability,
Controllability and the Invariant Measure, https://arxiv.org/pdf/1204.0563v1.pdf
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Outline

• Elements of Learning Theory and Function Approximation in RKHSs
• Probability Measures in RKHSs and the Maximum Mean Discrepancy
• Kernel Flows for Learning Chaotic Dynamical Systems: Parametric Kernel Flows,
Partial Observations, Sparse Kernel Flows, Hausdorff Metric based Kernel Flows.
• Detection of Critical Transitions for some Slow-Fast SDEs
• Approximation of Center Manifolds in RKHSs
• Construction of Lyapunov Functions in RKHSs
• Review of Some Concepts of Linear Control Systems
• On Nonlinear Control Systems in RKHSes
• Approximation of Nonlinear Control Systems in RKHSs
• Review of Some Concepts of Linear SDEs
• Learning SDEs
• Estimation of the Stationary Solution of the Fokker-Planck Equation of
nonlinear SDEs
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Summary of the Approach

• We assume that there is a ϕ : Rn → H; x 7→ z where H is an RKHS such that
we can perform an analysis (in general, but not necessarily, a linear analysis) in H
then come back to Rn.
• The transformation ϕ is obtained from the kernel that defines the RKHS (in
general, it is not necessary to explicitly find ϕ). In practice, we will use
ϕ(x) = [ϕ1(x) · · ·ϕN(x)]T with

ϕi (x) = K (x , x(ti ))

where K is a reproducing kernel and x(ti ) are measurements at time ti ,
i = 1, · · · ,N and N ≫ n.
• Measurements/Data are used to construct the Hilbert Space where
computations become “simpler”.
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Reproducing Kernel Hilbert Spaces

• Historical Context: Appeared in the 1930s as an answer to the question: when is
it possible to embed a metric space into a Hilbert space ? (Schoenberg, 1937)
• Answer: If the metric satisfies certain conditions, it is possible to embed a
metric space into a special type of Hilbert spaces called RKHSs.
• Properties of RKHSs have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964; Wahba, 1990s; Smale, 2000s etc.)
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Reproducing Kernel Hilbert Spaces

• Definition: A Hilbert Space is an inner product space that is complete and
separable with respect to the norm defined by the inner product.
• Definition: For a compact X ⊆ Rd , and a Hilbert space H of functions
f : X → R, we say that H is a RKHS if there exists k : X × X → R such that

i. k has the reproducing property, i.e. ∀f ∈ H, f (x) = ⟨f (·), k(·, x)⟩ (k is called
a reproducing kernel).

ii. k spans H, i.e. H = span{k(x , ·)|x ∈ X}.
• Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space H
with a reproducing kernel whose span is dense in H. Equivalently, a RKHS is a
Hilbert space of functions where all evaluation functionals are bounded and linear.
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are
• The RKHS is unique.
• ∀x , y ∈ X , K (x , y) = K (y , x) (symmetry).
• ∑m

i,j=1 αiαjK (xi , xj) ≥ 0 for αi ∈ R and xi ∈ X (positive definitness).
• ⟨K (x , ·),K (y , ·)⟩H = K (x , y). Using this property, one can immediately get the
canonical feature map (Aronszajn’s feature map): Φc(x) = K (x , ·).

• A Mercer kernel is a continuous positive definite kernel.
• The fact that Mercer kernels are positive definite and symmetric reminds us of
similar properties of Gramians and covariance matrices. This is an essential fact
that we are going to use in the following.

• Examples of kernels: k(x , x ′) = ⟨x , x ′⟩d , k(x , x ′) = exp
(
− ||x−x′||22

2σ2

)
,

k(x , x ′) = tanh(κ⟨x , x ′⟩+ θ).
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RKHS in Approximation Theory (aka Learning Theory)

• RKHS play an important role in learning theory whose objective is to find an
unknown function f : X → Y from random samples (xi , yi )|mi=1.
• For instance, assume that the random probability measure that governs the
random samples is ρ and is defined on Z := X ×Y . Let X be a compact subset of
Rn and Y = R. If we define the least square error of f as E =

∫
X×Y

(f (x)− y)2dρ,
then the function that minimizes the error is the regression function fρ defined as

fρ(x) =

∫
R
ydρ(y |x), x ∈ X ,

where ρ(y |x) is the conditional probability measure on R.
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RKHS in Approximation Theory (aka Learning Theory)

• Since ρ is unknown, neither fρ nor E is computable. We only have the samples
s := (xi , yi )|mi=1. The error E is approximated by the empirical error Es(f ) by

Es(f ) =
1

m

m∑
i=1

(f (xi )− yi )
2 + λ||f ||2H,

for λ ≥ 0, λ plays the role of a regularization parameter.
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RKHS in Approximation Theory (aka Learning Theory)

• In learning theory, the minimization is taken over functions from a hypothesis
space often taken to be a ball of a RKHS HK associated to a kernel K , and the
function fs that minimizes the empirical error Es is

fs(x) =
m∑
j=1

cjK (x , xj) =
m∑
j=1

cjϕj(x),

where the coefficients (cj)
m
j=1 are obtained by solving the linear system

λmci +
m∑
j=1

K (xi , xj)cj = yi , i = 1, · · ·m,

and fs is taken as an approximation of the regression function fρ.
• We call learning the process of approximating the unknown function f from
random samples on Z .
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RKHS in Change Point Detection

• We will consider a sequence of samples x1, x2, · · · , xn from a domain X .
• We are interested in detecting a possible change-point τ , such that before τ , the
samples xi ∼ P i.i.d for i ≤ τ , where P is the so-called background distribution,
and after the change-point, the samples xi ∼ Q i.i.d for i ≥ τ + 1, where Q is a
post-change distribution.
• We map the dataset in an RKHS H then compute a measure of discrepancy ∆n.
• ∆n is small if P = Q and large if P and Q are far apart.
• We will use the maximum mean discrepancy (MMD)

MMD[H,P,Q] := sup
f∈H,||f ||≤1

{Ex [f (x)]− Ey [f (y)]},

as a measure of heteregoneity.
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Probability Measures in RKHSes

• Let H be an RKHS on the separable metric space X , with a continuous feature
mapping ϕ : X → H. Assume that k is bounded, i.e. supX k(x , x) <∞.
• Let P be the set of Borel probability measures on X . We define the mapping to
H of P ∈ P as the expectation of ϕ(x) with respect to P, i.e.

µP : P → H
P 7→

∫
X ϕ(x)dP(x) =: µk(P) (kernel mean embedding of P)

• The maximum mean discrepancy (MMD) between two probability measures P
and Q is defined as the distance between two such mappings

MMD(P,Q) = ||µk(P)− µk(Q)||Hk
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Probability Measures in RKHSes

• The maximum mean discrepancy (MMD) is defined as (Gretton et al., 2007)
MMD(P,Q) := ||µP − µQ ||H,

=
(
Ex,x′(k(x , x ′)) + Ey ,y ′(k(y , y ′))− 2Ex,y (k(x , y)

) 1
2

where

x and x ′ are independent random variables drawn according to P, y and y ′ are
independent random variables drawn according to Q, and x is independent of y .
• This quantity is a pseudo-metric on distributions, i.e. it satisfies all the qualities
of a metric except MMD(P,Q) = 0 iff P = Q.
• For the MMD to be a metric, it is sufficient that the kernel is characteristic, i.e.
the map µP : P → H is injective. This is satisfied by the Gaussian kernel (both on
compact domains and on Rd) for example.
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Probability Measures in RKHSes

• RKHS embedding:

P → µk(P) = EX∼Pk(·,X ) ∈ Hk

P → [Eφ1(X ), · · · ,Eφs(X )] ∈ Rs

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

MMDk(P , Q) = kµk(P ) � µk(Q)kHk
= sup

f2Hk: kfkHk
1

|Ef(X) � Ef(Y )|

Characteristic kernels: MMDk(P , Q) = 0 iff P = Q.
• Gaussian RBF exp(� 1

2�2 kx � x0k2
2), Matérn family, inverse multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn, P )! 0, Pn  P.

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings Oslo, 06/05/2017 4 / 18
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Probability Measures in RKHSes

• For characteristic kernels, the MMD metrizes the weak- ⋆ topology on
probability measures

MMDk(Pn,P)→ 0⇔ Pn ⇝ P

• For characteristic kernels: convergence in distribution iff convergence in MMD.
• It is an Integral Probability Metric that can be computed directly from data
without having to estimate the density as an intermediate step.
• Given two i.i.d samples (x1, · · · , xm) from P and (y1, · · · , ym) from Q, an
unbiased estimate of the MMD is

MMD2
u :=

1

m(m − 1)

m∑
i ̸=j

[k(xi , xj) + k(yi , yj)− k(xi , yj)− k(xj , yi )]
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Kernel Flows for Learning Chaotic Dynamical Systems
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Kernel Flows for Learning Chaotic Dynamical Systems

• Problem P : Given input/output data (x1, y1), · · · , (xN , yN) ∈ X ×R, recover an
unknown function u∗ mapping X to R such that u∗(xi ) = yi for i ∈ {1, ...,N}.
• In the setting of optimal recovery, Problem P can be turned into a well posed
problem by restricting candidates for u to belong to a Banach space of functions
B endowed with a norm defined as

||u||2 = supϕ∈B∗
(
∫
ϕ(x)u(x)dx)2

(
∫
ϕ(x)K (x , y)ϕ(y)dxdy)

and identifying the optimal recovery as the minimizer of the relative error

minvmaxu
||u − v ||2
||u||2 ,

where the max is taken over u ∈ B and the min is taken over candidates in v ∈ B
such that v(xi ) = u(xi ) = yi .
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Kernel Flows for Learning Chaotic Dynamical Systems

• The method of KFs is based on the premise that a kernel is good if there is no
significant loss in accuracy in the prediction error if the number of data points is
halved. This led to the introduction of

ρ =
||v∗ − v s ||2
||v∗||2

which is the relative error between v∗, the optimal recovery of u∗ based on the full
dataset X = {(x1, y1), . . . , (xN , yN)}, and v s the optimal recovery of both u∗ and
v∗ based on half of the dataset X s = {(xi , yi ) | i ∈ S} (Card(S) = N/2) which
admits the representation

v s = (y s)TAsK (x s , ·)
with y s = {yi | i ∈ S}, x s = {xi | i ∈ S}, As = (Θs)−1, Θs

i,j = K (x si , x
s
j ).
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Kernel Flows for Learning Chaotic Dynamical Systems

Given a family of kernels Kθ(x , x
′) parameterized by θ, the KF algorithm can then

be described as follows :

1. Select random subvectors X b and Y b of X and Y (through uniform sampling
without replacement in the index set {1, . . . ,N})

2. Select random subvectors X c and Y c of X b and Y b (by selecting, at random,
uniformly and without replacement, half of the indices defining X b)

3. Let

ρ(θ,X b,Y b,X c ,Y c) := 1− Y c,TKθ(X
c ,X c)−1Yc

Y f ,TKθ(X b,X b)−1Y b
,

be the squared relative error (in the RKHS norm ∥ · ∥Kθ
defined by Kθ)

between the interpolants ub and uc obtained from the two nested subsets of
the dataset and the kernel Kθ

4. Evolve θ in the gradient descent direction of ρ, i.e. θ ← θ − δ∇θρ

5. Repeat.
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Kernel Flows for Learning Chaotic Dynamical Systems

• Let x1, . . . , xk , . . . be a time series in Rd . Our goal is to forecast xn+1 given the
observation of x1, . . . , xn.
• We work under the assumption that this time series can be approximated by a
solution of a dynamical system of the form

zk+1 = f †(zk , . . . , zk−τ†+1),

where τ † ∈ N∗ and f † may be unknown.
• Given τ ∈ N∗, the approximation of the dynamical can then be recast as that of
interpolating f † from pointwise measurements

f †(Xk) = Yk for k = 1, . . . ,N

with Xk := (xk+τ−1, . . . , xk), Yk := xk+τ and N = n − τ .
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Kernel Flows for Learning Chaotic Dynamical Systems

• Given a reproducing kernel Hilbert space of candidates for f †, and using the
relative error in the RKHS norm ∥ · ∥ as a loss, the regression of the data (Xk ,Yk)
with the kernel K associated with provides a minimax optimal approximation of
f † in . This interpolant (in the absence of measurement noise) is

f (x) = K (x ,X )(K (X ,X ))−1Y

where X = (X1, . . . ,XN), Y = (Y1, . . . ,YN), k(X ,X ) for the N × N matrix with
entries k(Xi ,Xi ), and k(x ,X ) is the N vector with entries k(x ,Xi ).
• Use different variants of Kernel Flows (KF) to learn the kernel K from the data
(Xk ,Yk).
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Kernel Flows for Learning Chaotic Dynamical Systems

Assume the kernel K to be parameterized by θ. To update θ in Kθ, we minimize
one of the following metrics (different variants of KFs)

▶ Metric associated to the RKHS norm

ρ(θ,X b,Y b,X c ,Y c) := 1− Y c,TKθ(X
c ,X c)−1Yc

Y f ,TKθ(X b,X b)−1Y b

▶ Metric associated to Lyapunov exponents and minimize

ρL = |λmax,N − λmax,N/2|

▶ Metric associated to the Maximum Mean Discrepancy (MMD) and minimize

ρMMD = MMD(S1,S2)

between two different samples of the time series.

▶ Metric associated to the Hausdorff distance and minimize

ρHD = HD(AN ,AN/2)
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Kernel Flows for Learning Chaotic Dynamical Systems

• We use the kernel

k(x , y) = α0 max{0, 1− ||x − y ||22|
σ0

}+ α1 e
||x−y||22

σ2
1 + α2e

− ||x−y||2
σ2
2

+ α3e
−σ3 sin

2(σ4π||x−y ||2)e
− ||x−y||22

σ2
5 + α4||x − y ||22
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Kernel Flows for Learning Chaotic Dynamical Systems

• Bernoulli map x(k + 1) = 2x(k) mod 1

(a) Time series generated by the

true dynamics (red) and the
approximation (blue) with the
learned kernel (left) and the
initial kernel (right), for an

irrational initial condition π/10.

(b) Time series generated by the

true dynamics (red), the
approximation with the learned

kernel (blue), the kernel
approximation without learning the
kernel (green), for a rational initial

condition 0.1

Figure: Time series generated by the true dynamics, approximation using the learned
kernel and the kernel without learning for different initial conditions
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Kernel Flows for Learning Chaotic Dynamical Systems

• Lorenz system

dx

dt
= s(y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz

with s = 10, r = 28, b = 10/3.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Time series generated by the true dynamics (red) and the approximation with the
learned kernel (blue) - x component in the left figure, y component in the middle figure,
z component in the right figure.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Difference between the true and the approximated dynamics with the learned
kernel using ρ (red (first, third and fifth from the left)), with the initial kernel (green
(second, fourth and sixth from the left)). x-component in the two figures at the left,
y-component in the middle two figures, z-component in the right two figures.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Projection of the true attractor and approximation of the attractor using a
learned kernel on the XY,XZ and YZ axes (first, third and fifth from the left), Projection
of the true attractor and approximation of the attractor using with initial kernel on the
XY,XZ and YZ axes (second, fourth and sixth from the left)
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: True attractor (blue) and approximation of the attractor using a learned kernel
(red) [left], True attractor (blue) and approximation of the attractor using initial kernel
(red) [right]
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Kernel Flows for Learning Chaotic Dynamical Systems
• HYCOM: 800 core-hours per day of forecast on a Cray XC40 system
• CESM: 17 million core-hours on Yellowstone, NCAR’s high-performance computing resource
• Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta supercomputer.
• Our method: 40 seconds to train on a single node machine (laptop) without acceleration
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Kernel Flows for Learning Chaotic Dynamical Systems
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

• Consider the dynamical system

x(k + 1) = f (x(k)) =

[
fn(x)
fm(x)

]
where f ∈ C(Rn × Rm,Rn+m).
• We assume that we have access to measurements from the first n components
of the x−variable that we denote as xn and that the remaining m components,
that we denote as xm, are not observed, i.e. we only observe xn(1), . . . , xn(l).
Our goal is to forecast x(l + 1) given the observation of xn(1), . . . , xn(l).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

• This is equivalent to minimizing the following optimization problem w.r.t fn, fm
and the the unknown m−variables required in the representer formula.

min L = ||fn||2Γ1
+ ||fm||2Γ2

+ λ

N∑
i=1

(
(fn(x

n
i , x

m
i )− xni+1)

2 + (fm(x
n
i , x

m
i )− xmi+1)

2
)
,

• Let A = (xn2 , · · · , xnl+1), B = (xm2 , · · · , xml+1), C = (. . . , (xni , x
m
i ), . . .).

The minimizers of the loss L are fn(·) = Γ1(·,C )(Γ1(C ,C ) + λ−1Id)
−1A,

fm(·) = Γ2(·,C )(Γ2(C ,C ) + λ−1Id)
−1B which leads to the following reduced

optimization problem

minBA
T (Γ1(C ,C ) + λ−1Id)

−1A+ BT (Γ2(C ,C ) + λ−1Id)
−1B
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Consider the Lorenz system

ẋ = σ(y − x),

ẏ = x(ρ− z)− y ,

ż = xy − βz

with σ = 10, ρ = 28, β = 8
3 . First, we consider the case where we have access to

the x and y variables but not z .
We follow the following steps: i.) find the auxiliary variable za, ii.) use kernel
flows to learn the parameters of the kernel

Kθ (x, y) =θ
2
1 exp

−∥x − y∥22
2θ2

0

 + θ
2
3

(
x⊤y + θ

2
2

)2
+ θ

2
6

(
θ
2
4 + θ

2
5∥x − y∥22

)− 1
2 + θ

2
9

(
θ
2
8 + ∥x − y∥22

)−θ7 +

θ
2
11

1 +
∥x − y∥22

θ2
10

−1

+ θ
2
12 max

0, 1 −
∥x − y∥22

θ2
13

 + θ
2
14 exp

−∥x − y∥2
2θ2

15

+

θ
2
16 exp

− sin2
(
π∥x − y∥22/θ17

)
θ2
18

 exp

−
∥x − y∥22

θ19

 + θ
2
20 exp

− sin2
(
π∥x − y∥22/θ21

)
θ2
22
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

We generate 200 data points using initial conditions x(0) = 0, y(0) = 0,
z(0) = 0, and sampling time ts = 0.01, and we use gradient descent with step size
η = 10−7 to solve the optimization problem to find the auxiliary variable za.
For prediction, we started with a time delay τ † = 3 but the results were poor. By
increasing the time delay to τ † = 4, the results improve and are in the figures
below.
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

True (blue) vs. Prediction (red) of the x variable (top), True (blue) vs. Prediction (red) of the y variable (middle), True (blue) vs. Prediction (red) of the

y variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

The errors between the true and approximated values over longer simulation
intervals are plotted in the figures below.

Figure: Errors between the true and the approximation of x−variable (top), the true and
the approximation of y−variable (middle), and the true and the approximation of
z−variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Figure: Reconstruction from true data (blue) vs. approximation (red) of the attractor.
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Sparse Kernel Flows for Learning Chaotic Dynamics

• Consider a kernel of the form

Kβ,θ(x , y) =
m∑
i=1

θ2i ki (x , y ;β)

• Sparsify Kβ,θ by L1 regularization

L(β, θ) = argmin
β,θ

1−
y⊤
c K−1

β,θyc

y⊤
b K−1

β,θyb
+ λ∥θ∥1

• We apply it to a database of 131 chaotic dynamical systems.
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Sparse Kernel Flows for Learning Chaotic Dynamics

We use the following kernel

K(x, y) =θ
2
1 exp

−∥x − y∥22
2β2
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 1: Complex Ca2+oscillations

d

dt
z = Vin − V2 + V3 + kf y − kz

d

dt
y = V2 − V3 − kf y

d

dt
a = βV4 − V5 − ϵa

where Vin = V0 + V1β, V2 = VM2
z2

K 2
2+z2

, V3 = VM3
zm

Km
z +zm

y2

K 2
y +y2

a4

K 4
a+a4 ,

V5 = VM5
ap

K p
5 +ap

zn

K n
d+zn .
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Sparse Kernel Flows for Learning Chaotic Dynamics

CaTwoPlusQuasiperiodic_lasso-0_delay-3.png
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 2: Multiple interacting Chua electronic circuits
Equation:

d

dt
x = a(y − f (x))

d

dt
y = x − y + z

d

dt
z = −by

where

f (x) = m7x +
5∑

i=1

1

2
(mi −mi+1) (|x + ci+1| − |x − ci+1|)
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Sparse Kernel Flows for Learning Chaotic Dynamics

MultiChua_lasso-0_delay-3.png
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Sparse Kernel Flows for Learning Chaotic Dynamics

Index Name
CaTwoPlusQuasiperiodic MultiChua

Regular KFs
Sparse KFs
(λ = 1)

Regular KFs
Sparse KFs
(λ = 2)

coefficients θ1 3.007 0.169 1.149 1.016
θ2 15.886 -3.287 1.558 1.834
θ3 2.260 0.495 1.131 0.965
θ4 3.290 0.166 1.152 0.974
θ5 3.297 0.113 1.152 0.965
θ6 4.735 0.009 0.731 0.853
θ7 5.063 0 1.516 0.852
θ8 0.947 0.769 0.162 0
θ9 3.055 0.294 1.378 1.013
θ10 2.404 0.505 1.307 0.962
θ11 3.892 0.204 1.575 1.017
θ12 3.895 0.133 1.578 1.019
θ13 6.611 0 1.294 0.941
θ14 8.462 -0.038 3.709 1.220
θ15 -2.451 7.375 0.538 0.232

error criterion SMAPE 0.006 3.40 × 10−5 0.069 0.004
Hausdorff Distance 2.789 0.013 12.056 0.216
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics

• Consider a kernel of the form

Kβ,θ(x , y) =
m∑
i=1

θ2i ki (x , y ;β)

• Sparsify Kβ,θ by L1 regularization and learn its parameters via cross-validation
of the Hausdorff metric between the reconstruction of the attractor from N points
and the reconstruction of the attractor from N/2 points

L(β, θ) = argmin
β,θ

HD(AN ,AN/2) + λ∥θ∥1

• We apply it to a database of 131 chaotic dynamical systems.
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics
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Figure: Comparison of four methods for the examples. In each plot, the green line
presents true trajectory and the red line present predicted trajectory, respectively.
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Hausdorff metric based Kernel Flows for Learning Chaotic
Dynamics
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Figure: Distribution of forecasting errors for different methods for all 133 dynamical
systems.
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Detection of Critical Transitions for MultiScale Systems
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Detection of Critical Transitions for MultiScale Systems

• Consider the fast-slow SDE

ẋ1 =
1

ϵ
f1(x1, x2) +

σ1√
ϵ
η1(τ),

ẋ2 = f2(x1, x2) + σ2η2(τ)

where f1 ∈ C(R2;R) and f2 ∈ C(R2;R) are Lipschitz and η1, η2 are independent
white Gaussian noises.
• x1 is a fast variable in comparison to the slow variable x2.
• The set C0 = {(x1, x2) ∈ R2 : f1(x1, x2) = 0} is called the critical manifold.

Boumediene Hamzi MLDS in RKHS METU, 11/2024 53 / 121



MultiScale Systems

• The van der Pol model.
• The equations of the model are

ẋ1 =
1

ϵ
(x2 −

27

4 δ3
x21 (x1 + δ)) +

σ1√
ϵ
η1(t)

ẋ2 = −δ
2
− x1 + σ2η2(t)

δ = 1, σ1 = 0.1, σ2 = 0.1, ε = 0.01.
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MultiScale Systems

PREDICTABILITY OF CRITICAL TRANSITIONS PHYSICAL REVIEW E 92, 052905 (2015)
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FIG. 2. (Color online) Time series of the fast variable x and
the slow variable y of the QIF model, simulated using the Euler-
Maruyama method with parameter values (ϵ,δ,σ1) = (0.02,0.5,0.2).

also resembles the theta model for excitable neurons [43,44].
In the noiseless case, the value of y determines the number of
equilibria of the fast flow of x. For a positive y, we have two
equilibrium branches Ca±

0 = {x = ±√
y,y > 0}, whose union

together with the fold point at (0,0) is the critical manifold C0.
Note that Ca+

0 is attracting, while Ca−
0 is repelling. When

y is negative, the fast subsystem has no equilibria at all. In
particular, a saddle-node (or fold) bifurcation occurs at y = 0.
Therefore, the critical manifold of the QIF model is attracting
in quadrant I (x > 0,y > 0) and repelling in quadrant II
(x < 0,y > 0) as is illustrated in Fig. 1.

When 0 < ϵ ≪ 1 and starting from the point (1,1) and
uniformly decreasing y, the trajectory of the solution travels
near the attracting critical manifold Ca+

0 towards the fold point
(0,0). Shortly before reaching the fold point, depending upon
the noise level, the system may perform a noise-induced jump
across the flattening potential barrier between the stable and
the unstable equilibria and arrive in quadrant II. In quadrant
II, the repelling critical manifold drives the system further and
further towards negative infinity in x. In our model, however,
the system is considered to be in an excited state, when the
fast variable x is below a threshold −δ and reset to the initial
condition (1,1).

Numerical simulations of equations (11) and (12) using
the Euler-Maruyama method [45] generate time series of N
observations {xn} and {yn} at discrete time steps tn = t0 + n$t .
Here t0 denotes the initial time, n = 0,1, . . . ,N − 1 is the
index of each time step, and $ is a constant time interval of
numerical integration.

As illustrated in Fig. 2, CTs can be observed in the time
series of the fast variable x while the slow variable y acts as
the slowly changing bifurcation parameter. Since the system is
reset to the initial state (1,1) after x exceeds a certain threshold
−δ, we can use the QIF model to generate an arbitrary amount
of CTs, which we are going to investigate below from a
statistical perspective.

The stochastic QIF model may not only have direct
relevance for many transitions in neuroscience [42,46] as a
local normal form to model the subthreshold dynamics before
spiking or bursting but the QIF model could also be viewed

as useful for any applications with local fold dynamics and
global resets.

B. The van der Pol model

In addition to the purely local QIF model with resets, it
is also natural to compare it to a model, where the resets
are via a smooth global nonlinearity. The classical example
to study are van der Pol [47] (or FitzHugh-Nagumo [48])
relaxation oscillators [49]. In particular, we consider f (x,y) =
y − 27

4δ3 x
2(x + δ), F (x,y) ≡ 1, g(x,y) = − δ

2 − x, G(x,y) ≡
0 and obtain a version of the van der Pol (vdP) system

ẋ = 1
ϵ

[
y − 27

4δ3
x2(x + δ)

]
+ σ1√

ϵ
η1(t), (13)

ẏ = − δ

2
− x. (14)

The precise choice of the form of the model will be motivated
in more detail below, particularly with respect to the parameter
δ. When the external stimulus exceeds a certain threshold, the
behavior of the system changes qualitatively from a stable
fixed point to a limit cycle undergoing a Hopf bifurcation.

The deterministic version of the model, i.e., σ1 = 0, has one
fixed point, (xFP,yFP) = (− δ

2 , 27
32 ), which is unstable under the

assumptions δ ∈ (−
√

3,0) and 0 < ϵ ≪ 1. A trajectory of the
stochastic vdP (σ1 ̸= 0) forms a noisy relaxation-oscillation-
type periodic orbit involving two rapid transitions and two slow
drifts as is illustrated in Fig. 3. Since the critical manifold of
the vdP model has two fold points at (− 2

3δ,1) and (0,0), the
manifold is naturally split into three parts (left, middle, and
right)

Cl
vdP = CvdP ∩

{
(x,y) : x < − 2

3δ
}
, (15)

Cm
vdP = CvdP ∩

{
(x,y) : − 2

3δ < x < 0
}
, (16)

Cr
vdP = CvdP ∩ {(x,y) : x > 0}. (17)

By investigating the stability of the equilibria of of the fast
variable x for a fixed y (in the ϵ → 0 limit), we see that Cl

vdP,
Cr

vdP are normally hyperbolic attracting parts of the critical

−0.2
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 0.6
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−0.6 −0.5 −0.4 −0.3 −0.2 −0.1  0.1  0.2 x

yvdP model

(0,0)

(−2δ/3,1)

FIG. 3. (Color online) The dynamics of the vdP model. The
parameters (ϵ,δ,σ1) = (0.02,0.5,0.1). Analogous to Fig. 1, the critical
manifold (black lines, solid for the attracting part and dashed for the
repelling part), the fold points at (− 2

3 δ,1) and (0,0) (red circles) and
the numerical solution trajectory [blue (gray) solid line] are plotted
in state space. The dashed double arrows indicate the orientation of
the relaxations in the noisy case and the noise-induced transitions for
the fast variable.

052905-3
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MultiScale Systems

• Numerical Simulation
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Detection of Critical Transitions for MultiScale Systems

• We’ll use the following Gabor wavelet as basis to build the reproducing kernel :

Gτ,ω,θ(t) := (
2

π3
)

1
4

√
ω

α
cos(ω(t − τ) + θ)e−

ω2(t−τ)2

α2 , t, τ, θ ∈ R ω, α > 0

This wavelet allows only to recognize modes of the form t → cos(ω(t − τ) + θ) “à
la Fourier series”.
• In our context, we extend these wavelets to detect signals of the form
t → y(ω(t − τ) + θ) for 2π-periodic signal y ∈ L2([0, 2π]). This can be done using

χy ;τ,ω,θ(t) := (
2

π3
)

1
4

√
ω

α
y(ω(t − τ) + θ)e−

ω2(t−τ)2

α2 , t, τ, θ ∈ R ω, α > 0

Given χ, we construct the Gram matrix whose entries are

Ky ;τ,ω,θ(s, t) := χy ;τ,ω,θ(s)χy ;τ,ω,θ(t), s, t ∈ [0, 1]
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Detection of Critical Transitions for MultiScale Systems

• The reproducing kernel Ky associated to y , we integrate Ky ;τ,ω,θ(s, t) w.r.t
τ, ω, θ over their domain of definition :

Ky (s, t) =

∫ θmax

θmin

∫ ωmax

ωmin

∫ τmax

τmin

Ky ;τ,ω,θ(s, t)dτ dω dθ, s, t ∈ [0, 1]

• For stochastic van der Pol, the function y and the corresponding kernel are

Figure: The function y used to build the kernel k(s, t) (left), Projection on the s−axis of
the plot of the kernel KG (s, t) from vs. kernel Kχ(s, t) (right)
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Detection of Critical Transitions for MultiScale Systems

Figure: Reconstruction and noise for stochastic Van der Pol
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Detection of Critical Transitions for MultiScale Systems

• We define the energy of a sliding window Wi = [iτ, (i + 1)τ ] of width τ as

Ei = vT
i K−1

T KωiK
−1
T vi

where KT (s, t) =
∑

i Kwi (s, t) + σ2Id with σ large and Id the identity matrix, vi is
the signal in the interval [iτ, (i + 1)τ ], Kwi (s, t) = K (x(s), x(t)) with s, t ∈Wi ,
and Kwi (s, t) = 0 otherwise.
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Detection of Critical Transitions for MultiScale Systems

Figure: Energy E for α = 0.01 (top left) and α = 0.1 (top right), α = 2.0 (bottom)
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Center Manifold Approximation
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Center Manifold Analysis

Consider a dynamical system

ẋ = f (x) = Fx + f̄ (x)

of large dimension n, and F = ∂ f
∂ x (x)|x=0.

Suppose x = 0 is an equilibrium, i.e. f (0) = 0.
• Goal: Analyze the stability of this equilibrium.
• If F has all its eigenvalues with negative real parts ⇒ The origin is
asymptotically stable.
• If F has some eigenvalues with positive real parts ⇒ The origin is unstable.
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Center Manifold Analysis

• If σ(F ) ≤ 0 (some eigenvalues of F are with zero real parts with the rest of the
eigenvalues having negative real parts): The linearization fails to determine the
stability properties of the origin.
• After a linear change of coordinates, we have

ẋ1 = F1x1 + f̄1(x1, x2)

ẋ2 = F2x2 + f̄2(x1, x2)

where σ(F1) = 0 and σ(F2) < 0.
• Intuitively, we expect the stability of the equilibrium to only depend on the
nonlinear terms f̄1(x1, x2). The center manifold theorem correctly formalizes this
intuition.
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Center Manifold Analysis

• A center manifold is an invariant manifold, x2 = θ(x1), tangent to the x1
directions at x = 0.
• Since

ẋ1 = F1x1 + f̄1(x1, x2)

ẋ2 = F2x2 + f̄2(x1, x2)

and x2 = θ(x1), we deduce that θ satisfies the PDE

F2θ(x1)+f̄2(x1,θ(x1))=
∂θ
∂x1

(x1)(F1x1+f̄1(x1,θ(x1))).

• The Center Manifold Theorem ensures that there are smooth solutions to this
PDE.
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Center Manifold Analysis

• The center dynamics is the dynamics on the center manifold,

ẋ1 = F1x1 + f̄1(x1, θ(x1)).

• Center Manifold Theorem: The equilibria x1 = 0, x2 = 0 of the original dynamics
is locally asymptotically stable iff the equilibria x1 = 0 of the center dynamics is
locally asymptotically stable.
• After solving the PDE, this reduces the problem to analyzing the nonlinear
stability of a lower dimensional system.
• Our Contributions: kernel methods to approximate the center manifold, a
data-based version of the center manifold theorem.
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Center Manifold Analysis: Main results

• Let θ̂ be an approximant of the center manifold θ. Given the constraints
θ(0) = 0 and Dxθ(0) = 0, we use a generalized version of the representer theorem
and write

θ̂(x) =
N+1∑
i=1

k(x , xi )αi +
m∑
i=1

∂
(2)
i k(x , 0)βi ,

• (⇒) Under certain conditions, we prove that if the equilibrium x1 = 0 of

ẋ1 = F1x1 + f̄1(x1, θ̂(x1)).

is asymptotically stable then the equilibrium x1 = 0, x2 = 0 of the full order
dynamics is asymptotically stable ((asymptotic) stability-preserving property- in
one direction at least, second direction is still missing).
• We also prove that ||x1,θ(t)− x1,θ̂(t)|| is bounded.
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Numerical Experiments: Example 1

• We consider the 2-dimensional system

ẋ = f1(x , y) = xy

ẏ = f2(x , y) = −y − x2
(1)

• Analytically, the center manifold is y = −x2 + O(x3).
• We generate the training data by solving the system with an implicit Euler
scheme for initial time t0 = 0, final time T = 1000 and with the timestep
∆t = 0.1. We initiate the numerical procedure with initial values
(x0, y0) ∈ {±0.8} × {±0.8} and store the resulting data pairs in X and Y after
discarding all data whose x-values are not contained in the neighborhood
[−0.1, 0.1] which results in N = 38248 data pairs. We use the kernels

k1(x , y) := (1 + xy/2)4 and k2(x , y) = e−(x−y)2/2.
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Numerical Experiments: Example 1
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Numerical Experiments: Example 2

• Consider the (2 + 1)-dimensional system

ẋ = L1x + N1(x , y) =

(
0 −1
1 0

)(
x1
x2

)
+ y

(
x1
x2

)
ẏ = L2y + N2(x , y) = −y − x21 − x22 + y2.
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Numerical Experiments: Example 2

Figure: Approximations ĥ4
poly and ĥ

1/2
Gauss of the center manifold (first row), and

corresponding residuals r 4poly and r
1/2
Gauss (second row)
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Construction of Lyapunov Functions from Data
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Summary of the Approach

• We will consider a nonlinear ODE ẋ = f (x), x ∈ Rn and assume that f is not
known but x(ti ), i = 1, · · · ,N, are known.
• We approximate f from x(ti ), i = 1, · · · ,N.
• We find a Lyapunov function V̂ for f̂ .
• We prove that V̂ is also a Lyapunov function for f .
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Lyapunov Functions

• Consider the system of ODEs Σ :

{
ẋ = f (x),

x(0) = ξ
with x ∈ Rn,

f ∈ Cσ(Rn,Rn) where σ ≥ 1, n ∈ N.
Flow Stξ := x(t), solution of Σ.
• Assumptions

▶ 0 is an equilibrium (f (0) = 0)

▶ 0 is exponentially asymptotically stable (real parts of all eigenvalues of Df (0)
are negative)

• Definition (Basin of Attraction) The basin of attraction of 0 is

A := {ξ ∈ Rn|Stξ →t→∞ 0}

• The basin of attraction A can be determined using Lyapunov functions.
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Lyapunov Functions

Theorem (Lyapunov 1893)
Let V : Rn → R+, K ⊂ Rn a compact set.

▶ V decreases along solutions, i.e. (if V is smooth)

V ′(x) =
d

dt
V (x(t))|t=0 = ∇V (x) · f (x) < 0

for all x ∈ K \ {0} ( V ′ is the orbital derivative = derivative along the
solution )

▶ K is sublevel set of V , i.e. K = {x ∈ Rn|V (x) ≤ R}.
Then K ⊂ A.
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Existence of Lyapunov Functions

• “Converse Theorems” (Massera 1949) etc. - but not constructive !
• Theorem (Existence of V, Bhatia) Let f ∈ Cσ, σ ≥ 1, 0 exponentially stable
equilibrium. Then there exists V ∈ Cσ(A,R) with

V ′(x) := ∇V (x) · f (x) = −||x ||2 for all x ∈ A

The Lyapunov function V is uniquely defined up to a constant.
• Idea: V (x) =

∫∞
0
||Stx ||2dt.
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Computation of Lyapunov Functions

• Giesl proposed an algorithm to approximate Lyapunov functions using radial
basis functions.
• Error estimates for this approach have been proved by Giesl and Wendland.
• The method is based on finding an approximate solution of a first-order linear
PDE:

LV (x) = −||x ||2 (LV (x) = −p(x) with p(x) > 0)

with LV := V ′(x) := ∇V (x) · f (x).
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Computation of Lyapunov Functions (Giesl, 2007)

• Theorem (Giesl, 2007)
Consider ẋ = f (x) with f ∈ Cσ(Rn,Rn) and let x0 be an equilibrium such that all
eigenvalues of Df (x0) have a negative real part. Let p(x) ∈ Cσ(Rn,R) satisfy the
following conditions: a.) p(x) > 0 for x ̸= x0, b.) p(x) = O(||x − x0||η2) with
η > 0 for x → x0, c.) For all ϵ > 0, p has a lower positive bound on Rn \ B(x0, ϵ)
where B(x0, ϵ) is a the ball centered at x0 of radius ϵ.
Then there exists a Lyapunov function V1 ∈ Cσ(A(x0),R) such that V1(x0) = 0
and

LV1(x) = f1(x) := −p(x), for all x ∈ A(x0),

where A(x0) is the basin of attraction of x0.
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Computation of Lyapunov Functions (Giesl, 2007)

Algorithm: Let Φ(x) = ψk(||x ||) be a radial function where ψk is a Wendland
function (compact support). Consider the grid points XN = {x1, · · · , xN} ⊂ Rn.
Consider the following ansatz

V1(x) =
N∑

k=1

βk(δxk ◦ L)yΦ(x − y),

where (δxk ◦ L)y denotes differentiation with respect to y then evaluation at
y = xk .
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Computation of Lyapunov Functions (Giesl, 2007)

By considering the interpolation conditions

LV1(xj) = LV (xj) = f1(xj),

and by plugin in the ansatz

N∑
i=1

βk (δxj ◦ L)x(δxk ◦ L)yΦ(x − y)︸ ︷︷ ︸
=ajk

= LV (xj) = f1(xj) =: γj ,

one gets a system of linear algebraic equations for the β in βs:

Aβ = γ,

where the matrix A is symmetric and positive definite.
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Estimates on Lyapunov Functions (Giesl and Wendland,
2007)

• Theorem(Giesl & Wendland, 2007)
Let ψk , k ∈ N, be a Wendland function and let Φ(x) = ψk(||x ||) ∈ C 2k(Rn,R) be
a radial basis function. Let f ∈ Cσ(Rn,R) where σ ≥ n+1

2 + k. Then, for each
compact set K0 ⊂ A(x0) there is C∗ such that

|V ′(x)− V ′
1(x)| ≤ C∗hθ for all x ∈ K0,

where h := maxy∈K0 minx∈Xn ||x − y || is the fill distance and λ = 1/2 for k = 1
and λ = 1 for k ≥ 2 (or λ = k − 1/2).
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Computation of Lyapunov Functions from Data

• Giesl’s approach assumes that the right hand side of (ODE) is known, and
sampled values of f are used at chosen grid points.
• We assume the underlying system Σ where f is unknown but, instead, we have
sampled data values (xi ; yi )|mi=1 with yi = f (xi ) + η, i = 1, · · · ,m with each
xi ∈ A(x̄), and η ∈ Rd is an independent random variable drawn from a
probability distribution with zero mean and variance σ2 ∈ Rd .
• Our approximation algorithm looks for suitable functions in an RKHS.
• Error estimates are derived for some RKHSes that are also Sobolev spaces.
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Numerical Experiment

Consider the nonlinear system

ẋ1 = −x1 + x1x
2
2

ẋ2 = −x2 − x2x
2
1

(2)

It can be checked that V (x) = x21 + x22 is a Lyapunov function for the system.
First, we used Algorithm 1 to approximate the right hand side of (2) with
m = 400 points and z := (xi , yi )

m
i=1 are such that the points xi are equidistantly

distributed over [−0.95, 0.95] .
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Numerical Experiment
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Figure: Lyapunov function using Algorithm 2 with 360 points(top), 1520 points (bottom)
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Numerical Experiment
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Approximation of Control Systems in
Reproducing Kernel Hilbert Spaces
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Review of Some Concepts from Linear Control Theory

• Consider a linear control system

ẋ = Ax + Bu
y = Cx

,

where x ∈ Rn, u ∈ Rq, y ∈ Rp, (A,B) is controllable, (A,C ) is observable and A
is Hurwitz.
• We define the controllability and the observability Gramians as, respectively,

Wc =
∫∞
0

eAtBB⊤eA
⊤t dt, Wo =

∫∞
0

eA
⊤tC⊤CeAt dt.

• These two matrices can be viewed as a measure of the controllability and the
observability of the system.
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Review of Some Concepts from Linear Control Theory

• Consider the past energy, Lc(x0), defined as the minimal energy required to
reach x0 from 0 in infinite time

Lc(x0) = inf
u∈L2(−∞,0),

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
∥u(t)∥2 dt.

• Consider the future energy, Lo(x0), defined as the output energy generated by
releasing the system from its initial state x(t0) = x0, and zero input u(t) = 0 for
t ≥ 0, i.e.

Lo(x0) =
1

2

∫ ∞

0

∥y(t)∥2 dt,

for x(t0) = x0 and u(t) = 0, t ≥ 0.
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Review of Some Concepts from Linear Control Theory

• In the linear case, it can be shown that

Lc(x0) =
1
2x

⊤
0W

−1
c x0, Lo(x0) =

1
2x

⊤
0Wox0.

• Moreover, Wc and Wo satisfy the following Lyapunov equations

AWc +WcA
⊤= −BB⊤, A⊤Wo +WoA = −C⊤C .
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Controllability and Observability Energies in Model
Reduction of Linear Control Systems

• Gramians have several uses in Linear Control Theory. For example, for the
purpose of model reduction.
• Balancing: find a representation where the system’s observable and controllable
subspaces are aligned so that reduction, if possible, consists of eliminating
uncontrollable states which are also the least observable.
• More formally, we would like to find a new coordinate system such that

Wc = Wo = Σ = diag{σ1, · · · , σn},

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. If (F ,G ) is controllable and (F ,H) is observable,
then there exists a transformation such that the state space expressed in the
transformed coordinates (TFT−1,TG ,HT−1) is balanced and
TWcT

⊤= T−⊤WoT
−1 = Σ.
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Balancing of Linear Control Systems

• Typically one looks for a gap in the singular values {σi} for guidance as to where
truncation should occur. If we see that there is a k such that σk ≫ σk+1, then the
states most responsible for governing the input-output relationship of the system
are (x1, · · · , xk) while (xk+1, . . . , xn) are assumed to make negligible contributions.
• Although several methods exist for computing T , the general idea is to compute
the Cholesky decomposition of Wo so that Wo = ZZ⊤, and form the SVD UΣ2U⊤

of Z⊤WcZ . Then T is given by

T = Σ
1
2U⊤Z−1.
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Controllability and Observability Energies for Nonlinear
Systems

• Consider the nonlinear system Σ{
ẋ = f (x) +

∑m
i=1 gi (x)ui ,

y = h(x),

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f (0) = 0, gi (0) = 0 for 1 ≤ i ≤ m, and h(0) = 0.
Hypothesis H: The linearization of the system around the origin is controllable,
observable and F = ∂f

∂x |x=0 is asymptotically stable.
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Controllability and Observability Energies for Nonlinear
Systems

• Theorem (Scherpen, 1993) If the origin is an asymptotically stable equilibrium
of f (x) on a neighborhood W of the origin, then for all x ∈W , Lo(x) is the
unique smooth solution of

∂Lo
∂x

(x)f (x) +
1

2
h⊤(x)h(x) = 0, Lo(0) = 0

under the assumption that this equation has a smooth solution on W (Lo is a
Lyapunov function). Furthermore for all x ∈W , Lc(x) is the unique smooth
solution of

∂Lc
∂x

(x)f (x) +
1

2

∂Lc
∂x

(x)g(x)g⊤(x)
∂⊤Lc
∂x

(x) = 0, Lc(0) = 0

under the assumption that this equation has a smooth solution L̄c on W and that

the origin is an asymptotically stable equilibrium of −(f (x) + g(x)g⊤(x)∂L̄c

∂x (x))
on W .
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Balancing of Nonlinear Systems

• Theorem (Scherpen) Consider system Σ under Hypothesis H and the
assumptions in the preceding theorem. Then, there exists a neighborhood W of
the origin and coordinate transformation x = φ(z) on W converting the energy
functions into the form

Lc(φ(z)) =
1

2
z⊤z ,

Lo(φ(z)) =
1

2

n∑
i=1

z2i σi (zi )
2,

where σ1(x) ≥ σ2(x) ≥ · · · ≥ σn(x). The functions σi (·) are called Hankel
singular value functions.
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Balancing of Nonlinear Systems

• In the above framework for balancing of nonlinear systems, one needs to solve
(or numerically evaluate) the PDEs and compute the coordinate change x = φ(z).
• However there are no systematic methods or tools for solving these equations.
• Various approximate solutions based on Taylor series expansions have been
proposed Krener (2007, 2008), Fujimoto and Tsubakino (2008).
• Newman and Krishnaprasad (2000) introduce a statistical approximation based
on exciting the system with white Gaussian noise and then computing the
balancing transformation using an algorithm from differential topology.
• An essentially linear empirical approach, similar to Moore’s empirical approach,
was proposed by Lall, Marsden and Glavaski (2002).
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Computing the Controllability and Observability Energies:
Linear Case

• Analytic Approach: The Gramians Wc and Wo satisfy the Lyapunov equations

FWc +WcF
⊤= −GG⊤,

F⊤Wo +WoF = −H⊤H.

• Data-Based Approach: Moore showed that Wc and Wo can be obtained from
the impulse responses of ΣL. For instance,

Wc =

∫ ∞

0

X (t)X (t)Tdt, Wo =

∫ ∞

0

Y T (t)Y (t)dt

where X (t) is the response to ui (t) = ei with x(0) = 0, and Y (t) is the output
response to u(t) = 0 and x(0) = ei .
Given X (t) and Y (t), one can perform PCA to obtain Wc and Wo respectively.
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Empirical Estimates of the Gramians

The observability and controllability Gramians may be estimated statistically from
typical system trajectories:

Ŵc =
T

mN

N∑
i=1

X (ti )X (ti )
⊤, Ŵo =

T

pN

N∑
i=1

Y (ti )Y (ti )
⊤.

where ti ∈ [0,T ], i = 1, . . . ,N, X (t) =
[
x1(t) · · · xm(t)

]
, and

Y (t) = [y1(t) · · · yn(t)]⊤ if {x j(t)}mj=1, {y j(t)}nj=1 are measured (vector-valued)
responses and outputs of the system.
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Computing the Controllability and Observability Energies
for Nonlinear Systems

Questions
• How to compute the controllability and observability energies from data ?
• How to extend Moore’s empirical approach to Nonlinear Control Systems ?
• Are there “Gramians” for Nonlinear Systems ? and in the affirmative, how to
compute them from data ?
• Idea ! Use of kernel methods. A kernel based procedure may be interpreted as
mapping the data, through “feature maps”, from the original input space into a
potentially higher dimensional Reproducing Kernel Hilbert Space where linear
methods may then be used.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• We consider a general nonlinear system of the form{
ẋ = f (x , u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f (0, 0) = 0, and h(0) = 0.
• Assume that the method of linear balancing can be applied to the nonlinear
system when lifted into an RKHS.
• In the linear case, Lc(x0) =

1
2x

T
0 W−1

c x0 and Lo(x0) =
1
2x

T
0 Wox0 can be

rewritten as Lc(x0) =
1
2

〈
W †

c x0, x0
〉
and Lo(x0) =

1
2 ⟨Wox0, x0⟩.

• In the nonlinear case, it may be tempting to write, in H, Lc(x) = 1
2

〈
W †

c h, h
〉

and Lo(x) =
1
2 ⟨Woh, h⟩ where h = Φ(x) = K (x , ·) and Φ : Rn → H. However,

there are some complications...
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• We can show that

L̂c(x) =
1
2

〈
( 1
mR∗

xRx + λI )−2 1
mR∗

xRxKx ,Kx

〉
= 1

2m

〈
R∗

x(
1
mRxR∗

x + λI )−2RxKx ,Kx

〉
= 1

2mkc(x)
⊤( 1

mKc + λI )−2kc(x),

where kc(x) := RxKx =
(
K (x , xµ)

)Nq
µ=1

is the Nq-dimensional column vector

containing the kernel products between x and the controllability samples.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Similarly, letting x now denote the collection of m = Np observability samples,
we can approximate the future output energy by

L̂o(x) =
1
2

〈
ŴoKx ,Kx

〉
(3)

= 1
2m

〈
R∗

xRxKx ,Kx

〉
= 1

2mko(x)
⊤ko(x) =

1
2m ∥ko(x)∥

2
2

where ko(x) :=
(
K (x , dµ)

)Np
µ=1

is the Np-dimensional column vector containing

the kernel products between x and the observability samples.
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Balanced Reduction of Nonlinear Control Systems in RKHS

• We consider a general nonlinear system of the form{
ẋ = f (x , u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f (0, 0) = 0, and h(0) = 0. We assume that the
origin of ẋ = f (x , 0) is asymptotically stable.

Proposed Data-Driven Approach:

▶ Assume that we can apply the method of linear balancing when the system is
lifted to a high (possibly infinite) dimensional feature space.

▶ Carry out balancing and truncation (linear techniques) implicitly in the
feature space (discard unimportant states).

▶ Construct a nonlinear reduced-order model by learning approximations to f , h
defined directly on the reduced state space.
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Balancing in RKHS

Idea: We can perform balancing/truncation in feature space by lifting the data
into H via Φ, and simultaneously diagonalizing the corresponding covariance
operators.

The standard empirical controllability Gramian (in Rn)

Ŵc =
T

mN

N∑
i=1

X (ti )X (ti )
⊤=

T

mN

N∑
i=1

m∑
j=1

x j(ti )x
j(ti )

⊤

becomes

Cc =
T

mN

N∑
i=1

m∑
j=1

〈
Φ
(
x j(ti )

)
, ·
〉
H Φ

(
x j(ti )

)
for example.
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Balancing in RKHS

• “Balancing” is carried out implicitly in H by simultaneous diagonalization of Kc

and Ko .
• If K 1/2

c KoK
1/2
c = UΣ2U⊤, we can define the aligning transformation

T = Σ1/2U⊤
√
K †
c .

• The dimension of the state space is reduced by discarding small eigenvalues
{Σii}ni=q+1, and projecting onto the subspace in H associated with the first q < n
largest eigenvalues.
• This leads to the nonlinear state-space dimensionality reduction map
Π : Rn → Rq given by

Π(x) = T⊤
qkc(x), x ∈ Rn

where
kc(x) :=

(
K (x , x1(t1)), . . . ,K (x , xm(tN))

)⊤
.
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An Experiment

Consider the 7− D system (Nilsson, 2009)

ẋ1 = −x31 + u ẋ2 = −x32 − x21 x2 + 3x1x
2
2 − u

ẋ3 = −x33 + x5 + u ẋ4 = −x34 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x35 + u ẋ6 = x5 − x36 − x35 + 2u

ẋ7 = −2x36 + 2x5 − x7 − x35 + 4u

y = x1 − x22 + x3 + x4x3 + x5 − 2x6 + 2x7
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Experiment: Inputs

▶ Excite with impulses: inputs (Kc) and initial conditions (Ko , u = 0).

▶ Learn f̂ , ĥ using a 10Hz square wave input signal u.

▶ Reduce to a second-order system.

▶ Simulate the reduced system with a different input,

u(t) = 1
2

(
sin(2π3t) + sq(2π5t − π/2)

)
and compare the output to that of the original system.
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Experiment
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Experiment
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SDEs in Reproducing Kernel Hilbert Spaces
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Review of Some Concepts for Linear Stochastic Differential
Equations

• Consider the stochastically excited stable dynamical control systems affine in the
input u ∈ Rq

ẋ = f (x) + G (x)u ,

where G : Rn → Rn×q is a smooth matrix-valued function. We replace the control
inputs by sample paths of white Gaussian noise processes, giving the
corresponding stochastic differential equation (SDE)

dXt = f (Xt)dt + G (Xt)dW
(q)
t

with W
(q)
t a q−dimensional Brownian motion. The solution Xt to this SDE is a

Markov stochastic process with transition probability density ρ(t, x) that satisfies
the Fokker-Planck (or Forward Kolmogorov) equation

∂ρ

∂t
= −⟨ ∂

∂x
, f ρ⟩+ 1

2

n∑
j,k=1

∂2

∂xj∂xk
[(GGT )jkρ] =: Lρ .

The differential operator L on the right-hand side is referred to as the
Fokker-Planck operator. The steady-state probability density is a solution of the
equation

Lρ∞ = 0.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• In the context of linear Gaussian theory where we are given an n−dimensional

system of the form dXt = AXtdt + BdW
(q)
t , with A ∈ Rn×n, B ∈ Rn×q, the

transition density is Gaussian.
• It is therefore sufficient to find the mean and covariance of the solution X (t) in
order to uniquely determine the transition probability density.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• The mean satisfies d
dtE[x ] = AE[x ] and thus E[x(t)] = eAtE[x(0)]. If A is

Hurwitz, limt→∞ E[x(t)] = 0.
• The covariance satisfies d

dtE[xx
T ] = AE[xxT ] + E[xxT ]A+ BBT .

• Hence, Q = limt→∞ E[xx⊤] satisfies the Lyapunov system AQ+QA⊤= −BB⊤.

So, Q = Wc =
∫∞
0

eAtBB⊤eA
⊤t dt, where Wc is the controllability Gramian, which

is positive iff the pair (A,B) is controllable.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• Combining the above facts, the steady-state probability density is given by

ρ∞(x) = Z−1e−
1
2 x

⊤W−1
c x = Z−1e−Lc (x)

with Z =
√
(2π)ndet(Wc).
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Extension to the Nonlinear Case

• The preceding suggests the following key observations in the linear setting:
Given an approximation L̂c of Lc we obtain an approximation for ρ∞ of the form

ρ̂∞(x) ∝ e−L̂c (x)

• Although the above relationship between ρ∞ and Lc holds for only a small class
of systems (e.g. linear and some Hamiltonian systems), by mapping a nonlinear
system into a suitable reproducing kernel Hilbert space we may reasonably extend
this connection to a broad class of nonlinear systems.
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Nonlinear SDEs in RKHSes

• Assumption1: Given a suitable choice of kernel K , if the Rd -valued stochastic
process x(t) is a solution to the (ergodic) stochastically excited nonlinear system

dXt = f (Xt)dt + G (Xt) ◦ dW (q)
t

the H-valued stochastic process (Φ ◦ x)(t) =: X (t) can be reasonably modelled as
an Ornstein-Uhlenbeck process

dX (t) = AX (t)dt +
√
CdW (t), X (0) = 0 ∈ H

where A is linear, negative and is the infinitesimal generator of a strongly
continuous semigroup etA, C is linear, continuous, positive and self-adjoint, and
W (t) is the cylindrical Wiener process.
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Nonlinear SDEs in RKHSes

• Assumption2: The measure P∞ is the invariant measure of the OU process and
P∞ is the pushforward along Φ of the unknown invariant measure µ∞ on the
statespace X we would like to approximate.
• Assumption3: The measure µ∞ is absolutely continuous with respect to
Lebesgue measure, and so admits a density.
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Nonlinear SDEs in RKHSes

• The stationary measure µ∞ is defined on a finite dimensional space, so together
with part (iii) of Assumption A, we may consider the corresponding density

ρ∞(x) ∝ exp
(
−L̂c(x))
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Experiment

Consider the SDE dX = −5X 5 + 10X 3 +
√
2dW .
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Conclusions

• We used different variants of kernel flows to approximate chaotic dynamical
systems.
• We used the maximum mean discrepancy and extended kernel mode
decomposition to detect critical transitions.
• We introduced estimators for the controllability/observability energies of
nonlinear control systems. We used these energies to perform model
approximation of nonlinear control systems using a linear technique.
• We showed that the controllability energy estimator may be used to estimate
the stationary solution of the Fokker-Planck equation governing nonlinear SDEs
using a linear estimate.
• The estimators we derived were based on applying linear methods for control
and random dynamical systems to nonlinear control systems and SDEs, once
mapped into an infinite-dimensional RKHS acting as a “linearizing space”.
• We introduced a data-based approach for the construction of Lyapunov
functions, Center Manifold Approximation and Center Manifold Theorem.
• These results collectively argue that working in reproducing kernel Hilbert spaces
offers tools for a data-based theory of nonlinear dynamical systems.
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Other Activities on MLDS

▶ Special Issue on “Machine Learning and Dynamical Systems” in Physica D.

▶ Machine Learning and Dynamical Systems Seminar, hosted by the Alan
Turing Institute (London, UK). To join the mailinglist, cf.
https://sites.google.com/site/boumedienehamzi/

machine-learning-and-dynamical-systems-seminar

▶ If you have any question or are interested in collaborating, feel free to contact
me at boumediene.hamzi@gmail.com
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