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Motivating examples

What is a kernel, how do we construct it?

The XOR gate acts in the same way as the logical ”either/or.”
The output is ”true” if either, but not both, of the inputs are ”true.”
The output is ”false” if both inputs are ”false” or if both inputs are ”true.”



Motivating examples

Using a linear classifier, the red patterns can not be separated from the blue
ones.

In the higher dimensional feature space, they are linearly separable

φ(x) = [x1,x2,x1x2] ∈ X (x) = R2



Motivating examples

Many classical learning algorithms—such as the perceptron, support vector
machine (SVM) and principal component analysis (PCA) employ data
instances, e.g., x ,x ′ ∈Rn, only through an inner product (x ,x ′), which basically
is a similarity measure between x and x ′.

The class of linear functions induced by this inner product may be too
restrictive for many real-world problems.

Kernel methods aim to build more flexible and powerful learning algorithms by
replacing (x ,x ′) with non-linear, similarity measure.

Feature spaces can be used to compare objects which have much more complex
structure; strings, graphs.



Motivating examples

Learning algorithms are defined in terms of dot products between the features,
where these dot products can be computed in closed form (kernel trick)

The term “kernel” simply refers to a dot product between (possibly infinitely
many) features.

Kernel methods can be viewed as nonlinear versions of linear algorithms.



Motivating examples

The classification of objects with support vector machines (SVM)

 



Motivating examples

Kernel methods can be used to control smoothness of a function used in
regression or classification.

Different parameter choices determine whether the regression function overfits,
underfits, or fits optimally.
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Hilbert space

Inner product: Let H be a vector space over R.

A function (·, ·)H is said to be an inner product on H if

1. (α1f1+α2f2,g)H = α1(f ,g)H +α2(f2,gH )

2. (f ,g)H = (g , f )H

3. (f , f )H ≥ 0 and (f , f )H = 0 if and only if f = 0.

Norm: ||f || :=
√
(f , f )H .

A Hilbert space is a space on which an inner product is defined, along with the
condition that it contains the limits of all Cauchy sequences of functions.



Kernel

Let X be a non-empty set. A function k : X ×X → R is called a kernel if
there exists an real Hilbert space and a map φ : X →H such that ∀x ,x ′ ∈ X

k(x ;x ′) := (φ(x),φ(x ′))H .

All kernel functions are positive definite. If we have a positive definite function,
we know there exists one (or more) feature spaces for which the kernel defines
the inner product - it is not necessary to define the feature spaces explicitly.

Positive definite kernel: A symmetric function k : X ×X → R is positive
definite if ∀n ≥ 1, ∀(a1, . . . ,an) ∈ Rn,∀(x1, . . . ,xn) ∈ X

n

∑
i=1

n

∑
j=1

aiajk(xi ,kj )≥ 0

The kernel k(·, ·) is strictly positive definite if for mutually distinct xi , the
equality holds only when all the ai are zero.



Properties of kernels

▶ Sum of kernels are kernels : Given α > 0 and k,k1,k2 kernels on X , then
αk and k1+k2 are kernels on X .

▶ A difference of kernels may not be a kernel: if k1(x ,x)−k2(x ,x)< 0.

▶ Products of kernels are kernels: Given k1 on X1 and k2 on X2 than
k1×k2 i s a kernel on X1×X1.

▶ If X1 = X1 = X , then k =: k1×k2 is a kernel on X 2.



Some common kernels

▶ Polynomial kernel k(x ,x ′) := ((x ,x ′)+ c)m, c > o, m ≥ 1

▶ Exponential kernel on Rd k(x ,x ′) := exp((x ,x ′))

▶ Gaussian kernel on Rd k(x ,x ′) := exp(−γ−2||x−x ′||2)

The Gaussian kernel is translation-invariant,

kσ (x ,z) = gσ (x− z), where gσ (x) = exp− ∥x∥2
2σ2 .

Kernels are unique, but the feature maps are not unique.

X ∈ R2, and k(x ,y) = (x ,y)2

,

k(x ,y) = x21 x
2
2 +y21 y

2
2 +2x1x2y1y2

φ1(x) = (x21 x22
√
2x1x2), φ1(y) = (y21 y22

√
2y1y2)

φ2(x) = (x21 x22 x1x2 x1x2), φ2(y) = (y21 y22 y1y2 y1y2)



RKHS

Let H an Hilbert space of functions f : X → R with inner product (·, ·)H .
Then H is called a RKHS on X if there exists a function k : {X ×X → R
(the reproducing kernel)} such that

1. k(·,x) ∈ H for all x ∈ X ,

2. (f ,k(·,x))H = f (x) for all x ∈ X , f ∈ H (reproducing property).

The reproducing property is equivalent to state that, for x ∈ X , the x-translate
k(·,x) of the kernel is the Riesz representer of the evaluation functional
δx : H → R, δx (f ) := f (x) for f ∈ H , that is hence a continuous functional in
H . Also the converse holds.



RKHS

Let H be a RKHS on Ω with reproducing kernel k. Let n,n′ ∈ N, α ∈ Rn,
α ′ ∈ Rn′ , Xn,X

′
n′ ⊂ X , and define the functions

f (x) :=
n

∑
i=1

αik(x ,xi ), g(x) :=
n′

∑
j=1

α
′
jK(x ,x ′j ), x ∈ X .

1. f ,g ∈ H ,
2. (f ,)H = ∑

n
i=1 ∑

n′
j=1 αiα

′
jK(xi ,x

′
j ).

3. k is the unique reproducing kernel of H and it is a positive definite kernel.

Theorem (Aronszajn), 1950)

k is a p.d. kernel on X if and onşly if there exists a Hilbert space H and a
mapping φ : X → H , such that for any x ,x ′ ∈ X k(x ,x ′) = (φ(x),φ(x ′))H

 



Matrix-valued kernels & kernel trick

In the case of RKHS for vector-valued functions a separable Gaussian kernel
can be used

Kσ (x,z) = kσ (x,z)In ∈ Rn

Computational savings of the kernel trick

Polynomial kernel of degree p φ(x ,y) = (1+xT y))p .

Computation of the inner product α = xT y requires O(n) operations.
φ(x ,y) = (1+α)d .

Computing as product of the feature map of vector φ(x) of length O(n2)

φ(x) = (1 x1 . . .xn x
2
1 . . .x2n xp1 . . .xpn x1x2 x1x3 . . .x1xp x2x3 . . .xpxp)

requires O
(n+p

n

)
operations for p = 20, n = 100 ≈ 3 ·1022 operations.



Smoothness functional

for any function f ∈ H and any two pints x ,x ′ ∈ X

|f (x)− f (x ′)| = |(f ,kx −kx ′)H |
≤ ||f ||H ||kx −kx ′ ||H
= ||f ||H dk(x ,x

′)

Distance in the feature space

dk(x ,x
′)2 = ||φ(x1)−φ(x2)||2H

dk(x ,x
′)2 = k(x1,x1)+k(x2,x2)−2k(x1,x2)

The norm of a function in the RKHS controls how fast a function varies over X
with respect to the geometry defined by the kernel (Lipschitz constant ||f ||H )
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Kernel principal decomposition analysis (PCA)

Classical PCA: Find a d-dimensional subspace of a higher dimensional subspace
RD containing the direction of maximum variance

u1 = arg max
|u||≤1

1

n

n

∑
i=1

(
uT

(
xi −

1

n

n

∑
i=1

xi

))2

u1 = arg max
|u||≤1

uTCu

Covariance matrix

C =
1

n

n

∑
i=1

(
xi −

1

n

n

∑
i=1

xi

)(
xi −

1

n

n

∑
i=1

xi

)

u1 =
1

n
XHX

X = [x1, . . . ,xn],H = I −n−11n×n, where 1n×nn×n matrix of ones

Principal components ui are eigenvectors of the covariance matrix C

λiui = Cui



Principal component analysis (PCA

 



Kernel PCA

f1 = arg max
|f |||H ≤1

1

n

n

∑
i=1

((
(f ,φ(xi ))−

1

n

n

∑
i=1

φ(xi )

)
H

)2

f1 = arg max
|f ||H ≤1

var(f )

Covariance matrix

C =
1

n

n

∑
i=1

(
φ(xi )−

1

n

n

∑
i=1

φ(xi )

)
⊗

(
φ(xi )−

1

n

n

∑
i=1

φ(xi )

)
where

(a⊗b)c := (b,c)H a

analogous to the outer product of vectors.



Denoising hand-written digits by PCA

 



Classical ridge regression

Training points arranged in a matrix X = [x, . . . ,xn] ∈ RD . To each of these
points, there corresponds and output yi , arranged in a column vector
y = [y1, . . . ,y2]

T .

a∗ = arg min
a∈RD

(
n

∑
i=1

(yi −x ti a)
2+λ ||a||2

)
a∗ = arg min

a∈RD

(
||y −XT a||2+λ ||a||2

)
The regularized least squares solution

a∗ = (XXT +λ I )−1Xy

Solution with singular value decomposition (SVD)



Kernel ridge regression

a∗ = arg min
a∈H

(
n

∑
i=1

(yi − (a,φ(x− i))H )2+λ ||a||2H

)

X = [φ(x1) . . .φ(xn)], XX
T =

n

∑
i=1

φ(xi )⊗φ(xi ), (XX
T )ij =(φ(xi ),φ(xj ))H )= k(xi ,xj )

Solution

a∗ = (K +λ In)
−1y



Kernel ridge regression

 



Kernel ridge regression

▶ Underfitting Too large a λ resulting very smooth function following the
shape of the underlying data with a small prediction error.

▶ Overfitting Too small a λ fitting small fluctuations in the data due to
noise, at the expense of smoothness

▶ An apparently good choice is λ = 0.1, where the regression curve fits the
underlying trend without being overly influenced by noise.

▶ The kernel width σ affects the fit of ridge regression. Too large a σ results
in underfitting: the regression function is too smooth. Too small a σ

results in overfitting.

▶ λ and σ can be chosen by m-fold cross-validation to evaluate the resulting
performance of the learning algorithm.



Kernel ridge regression
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Regression

 



Classification

 



Structured output

 



Lectures & Software

Arthur Gretton

https://www.gatsby.ucl.ac.uk/~gretton/teaching.html

Julien Mairal and Jean-Philippe Vert

https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/

course/2020mva/

Codpy: Curse of dimensionality in Python

https://pypi.org/project/codpy/

https://scikit-learn.org/stable/modules/svm.html

https://www.gatsby.ucl.ac.uk/~gretton/teaching.html
https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/course/2020mva/
https://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/course/2020mva/
https://pypi.org/project/codpy/
https://scikit-learn.org/stable/modules/svm.html
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Jonathan H. Manton and Pierre-Olivier Amblard.
A primer on reproducing kernel Hilbert spaces.
Foundations and Trends® in Signal Processing, 8(1-2):1–126, 2014.

Vern I. Paulsen and Mrinal Raghupathi.
An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2016.

Sergei Pereverzyev.
An introduction to artificial intelligence based on reproducing kernel
Hilbert spaces.
Compact Textbooks in Mathematics. Birkhäuser/Springer, Cham, 2022.

José Luis Rojo-Álvarez, Manel Mart́ınez-Ramón, Jordi Muñoz-Maŕı, and
Gustau Camps-Valls.
Kernel Functions and Reproducing Kernel Hilbert Spaces, chapter 4, pages
165–207.
John Wiley & Sons, Ltd, 2018.

Bernhard Schölkopf and Alexander J. Smola.



Learning with kernels : support vector machines, regularization,
optimization, and beyond.
MIT Press, 2002.

Joe Suzuki.
Kernel methods for machine learning with math and Python—100
exercises for building logic.
Springer, Singapore, [2022] ©2022.

Haitao Zhao, Zhihui Lai, Henry Leung, and Xianyi Zhang.
Feature Learning and Understanding - Algorithms and Applications.
Springer, 2020.
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