Fundamental Properties of Reproducing Kernels and RKHSs

Baver Okutmustur

Middle East Technical University (METU), Ankara

Outline

- Part 1: Fundamental Concepts of Hilbert space
- Vector Space, Inner Product and Inner Product Space, Metric
- Hilbert Space
- Review of Linear Operator
- Riesz Theorem
- Some important definitions and operators
- Part 2: Reproducing kernels and RKHSs
- Definition and Basic Properties of Reproducing Kernel and RKHS
- Existence and Uniqueness of Reproducing Kernels and Associated RKHSs
- Properties and Some Important Theorems

Part 1

Fundamental Concepts of Hilbert space

- Vector Space, Inner Product and Inner Product Space, Metric
- Hilbert Space
- Review of Linear Operator
- Riesz Theorem
- Some important definitions and operators
- This part is mostly based on the book "A Course in Functional Analysis, Springer Verlag, Berlin - Heidelberg - New York, 1989" by J.B. Conway.

Review of Hilbert Spaces

Vector Space, Inner Product

- Vector Space A vector space is a linear space that is closed under vector addition and scalar multiplication. More precisely, if we denote our linear space by \mathcal{H} over the field \mathbb{C}, then it follows that
- (i) if $x, y, z \in \mathcal{H}$, then

$$
x+y=y+x \in \mathcal{H}, \quad x+(y+z)=(x+y)+z \in \mathcal{H} ;
$$

- (ii) if k is scalar, then $k x \in \mathcal{H}$.
- Inner Product Let \mathcal{H} be a linear space over the complex field \mathbb{C}. An inner product on \mathcal{H} is a two variable function
$\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$, satisfying
(1) $\langle f, g\rangle=\overline{\langle g, f\rangle}$ for $f, g \in \mathcal{H}$.
(2) For $\alpha, \beta \in \mathbb{C}$ and $f, g, h \in \mathcal{H}$
- $\langle\alpha f+\beta g, h\rangle=\alpha\langle f, h\rangle+\beta\langle g, h\rangle$
- $\langle f, \alpha g+\beta h\rangle=\bar{\alpha}\langle f, g\rangle+\bar{\beta}\langle f, h\rangle$
(3) $\langle f, f\rangle \geq 0$ for $f \in \mathcal{H}$ and $\langle f, f\rangle=0 \Longleftrightarrow f=0$.

Review of Hilbert Spaces

Pre-Hilbert Space, Norm, Properties of Norm

- Pre-Hilbert Space A vector space with an inner product is called a pre-Hillbert space (Inner product space) \mathcal{H} over the complex field \mathbb{C}.
- Norm A norm on an inner product space \mathcal{H} denoted by $\|\cdot\|$ is defined by

$$
\|f\|=\langle f, f\rangle^{1 / 2} \quad \text { or } \quad\|f\|_{\mathcal{H}}=\langle f, f\rangle_{\mathcal{H}}^{1 / 2}
$$

where $f \in \mathcal{H}$ and $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{\mathcal{H}}$ denotes the inner product on \mathcal{H}.

- Properties of Norm For all $f, g \in \mathcal{H}$, and $\lambda \in \mathbb{C}$, we have
- $\|f\| \geq 0$. (The equality occurs only if $f=0$).
- $\|\lambda f\|=|\lambda|\|f\|$.

Review of Hilbert Spaces

Some important Inequalities and Identities

Schwartz Inequality For all $f, g \in \mathcal{H}$, it follows that

$$
\begin{equation*}
|\langle f, g\rangle| \leq\|f\|\|g\| . \tag{1}
\end{equation*}
$$

In case if f and g are linearly dependent, then the inequality becomes equality.
Triangle Inequality For all $f, g \in \mathcal{H}$, it follows that

$$
\begin{equation*}
\|f+g\| \leq\|f\|+\|g\| \tag{2}
\end{equation*}
$$

In case if f and g are linearly dependent, then the inequality becomes equality.

Polarization Identity For all $f, g \in \mathcal{H}$, it follows that

$$
\begin{equation*}
\langle f, g\rangle=\frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}+i\|f+i g\|^{2}-\|f-i g\|^{2}\right) \tag{3}
\end{equation*}
$$

Parallelogram Identity For all $f, g \in \mathcal{H}$, it follows that

$$
\begin{equation*}
\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2} \tag{4}
\end{equation*}
$$

Review of Hilbert Spaces

Properties of Metric

- Metric A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ satisfying the properties
(1) $d(x, y) \geq 0$ and $d(x, y)=0$ only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, y) \leq d(x, z)+d(z, y)$;
for all $x, y, z \in X$. Moreover the space (X, d) is the associated metric space.
- If we re-arrange the metric with its properties for the inner product space \mathcal{H}, then it follows that for all $f, g, h \in \mathcal{H}$ and for all $\lambda \in \mathbb{C}$, where d satisfies all requirements to be a metric, we have
(1) $d(f, g) \geq 0$ and equality occurs only if $f=g$.
(2) $d(f, g)=d(g, f)$.
(3) $d(f, g) \leq d(f, h)+d(h, g)$.
(3) $d(f-h, g-h)=d(f, g)$.
(6) $d(\lambda f, \lambda g)=|\lambda| \cdot d(f, g)$.

So, every inner product space is a normed space, and hence also a metric space.

Review of Hilbert Spaces

Linear Operator

- Linear Operator A map L from a linear space to another linear space is called linear operator if

$$
L(\alpha f+\beta g)=\alpha L f+\beta L g
$$

is satisfied for all $\alpha, \beta \in \mathbb{C}$ and for all $f, g \in \mathcal{H}$. Some basic properties of the linear operators are given in the following.

- Continuous Operator An operator L is said to be continuous if it is continuous at each point of its domain.
- Lipschitz Constant of a Linear Operator If L is a linear operator from \mathcal{H} to \mathcal{G} where \mathcal{H} and \mathcal{G} are pre-Hilbert spaces, then the Lipschitz constant for L is its norm $\|L\|$ and it is defined by

$$
\begin{equation*}
\|L\|=\sup \left\{\|L f\|_{\mathcal{G}} /\|f\|_{\mathcal{H}}: 0 \neq f \in \mathcal{H}\right\} . \tag{5}
\end{equation*}
$$

Review of Hilbert Spaces

Linear Operator

Theorem

Let L be a linear operator from the pre-Hilbert spaces \mathcal{H} to \mathcal{G}. Then the followings are mutually equivalent:
(i) L is continuous
(ii) L is bounded, that is,

$$
\sup \left\{\|L f\|_{G}:\|f\|_{H} \leq k\right\}<\infty
$$

for $0 \leq k<\infty$.
(iii) L is Lipschitz continuous, that is,

$$
\|L f-L g\|_{G} \leq \lambda\|f-g\|_{\mathcal{H}},
$$

where $0 \leq \lambda<\infty$ and $f, g \in \mathcal{H}$.

Review of Hilbert Spaces

Some Properties of Linear Operators

Let $B(\mathcal{H}, \mathcal{G})$ be the collection of all continuous linear operators from the pre-Hilbert spaces \mathcal{H} to \mathcal{G}.

- $B(\mathcal{H}, \mathcal{G})$ is a linear space with respect to the natural addition and scalar multiplication satisfying

$$
(\alpha L+\beta M) f=\alpha L f+\beta M f,
$$

where L and M are linear operators, $f \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{C}$.

- Whenever $\mathcal{H}=\mathcal{G}$, then $B(\mathcal{H}, \mathcal{G})$ is denoted by $B(\mathcal{H})$.
- If \mathcal{K} is another pre-Hilbert space, $L \in B(\mathcal{H}, \mathcal{G})$ and $K \in B(\mathcal{G}, \mathcal{K})$. Then the product

$$
(K L) f=K(L f) \quad \text { for } \quad f \in \mathcal{H} \in B(\mathcal{H}, \mathcal{K}) .
$$

In addition,
(i) $K(\xi L+\zeta M)=\xi K L+\zeta K M$
(ii) $\|\xi L\|=|\xi| \cdot\|L\|$
(iii) $\|L+M\| \leq\|L\|+\|M\|$ and
(iv) $\|K L\| \leq\|K\|\|L\|$.
are also satisfied $(\xi, \zeta \in \mathbb{C})$.

Review of Hilbert Spaces

Normed Space, Normed Algebra, Linear Functional

- Normed Space Let L, M are linear operators, \mathcal{H}, \mathcal{G} pre-Hilbert spaces and $B(\mathcal{H}, \mathcal{G})$ is a metric space with respect to the translation invariant, positively homogenous distance function

$$
d(L, M):=\|L-M\|
$$

Then $B(\mathcal{H}, \mathcal{G})$ is a normed space with the operator norm.

- Normed Algebra For each $K \in B(\mathcal{G}, \mathcal{K})$, the map $L \longmapsto K L$ becomes a continuous linear operator from $B(\mathcal{H}, \mathcal{G})$ to $B(\mathcal{H}, \mathcal{K})$. In particular, $B(\mathcal{H})$ is a normed algebra
- Linear Form (or Linear Functional) A linear operator from the pre-Hilbert space \mathcal{H} to the scalar field \mathbb{C} is called a linear form (or linear functional).

Hilbert Space

Pre-Hilbert Space

Definition

A pre-Hilbert space \mathcal{H} is said to be a Hilbert space if it is complete in metric. In other words if f_{n} is a Cauchy sequence in \mathcal{H}, that is, if

$$
\left\|f_{n}-f_{m}\right\| \longrightarrow 0 \quad \text { whenever } \quad n, m \rightarrow \infty
$$

then there is $f \in \mathcal{H}$ such that

$$
\left\|f_{n}-f\right\| \longrightarrow 0 \quad \text { whenever } \quad n \rightarrow \infty
$$

Remark

- Every subspace of a pre-Hilbert space is also a pre-Hilbert space with respect to the induced inner product. However, for a subspace of a Hilbert space to be also a Hilbert space, it must be closed.
- Every finite dimensional subspace of a Hilbert space \mathcal{H} is closed.

Hilbert Spaces

Theorem

Let (Ω, μ) denotes a measure space so that Ω is the union of subsets of finite positive measure and $L^{2}(\Omega, \mu)$ consists of all measurable functions $f(\omega)$ on Ω such that

$$
\begin{equation*}
\int_{\Omega}|f(\omega)|^{2} d \mu(\omega)<\infty \tag{6}
\end{equation*}
$$

Then $L^{2}(\Omega, \mu)$ is a Hilbert space with respect to the inner product

$$
\begin{equation*}
\langle f, g\rangle:=\int_{\Omega} f(\omega) \overline{g(\omega)} d \mu(\omega) . \tag{7}
\end{equation*}
$$

Theorem (F. Riesz)

For each continuous linear functional φ on a Hilbert space \mathcal{H}, there exists uniquely $g \in \mathcal{H}$ such that

$$
\begin{equation*}
\varphi(f)=\langle f, g\rangle \text { for } f \in \mathcal{H} . \tag{8}
\end{equation*}
$$

Hilbert Spaces

Total subsets, Orthogonal Projection

- Total Subset of a Hilbert Space A subset \mathcal{A} of a Hilbert space \mathcal{H} is called total in \mathcal{H} if 0 is the only element that is orthogonal to all elements of \mathcal{A}. In other words,

$$
\mathcal{A}^{\perp}=\{0\}
$$

As a result, \mathcal{A} is total if and only if every element of \mathcal{H} can be approximated by linear combinations of elements of \mathcal{A}.

- Orthogonal Projection If \mathcal{M} is a closed subspace of \mathcal{H}, the map $f \mapsto f_{\mathcal{M}}$ gives a linear operator from \mathcal{H} to \mathcal{M} with norm ≤ 1. This operator is called as the orthogonal projection to \mathcal{M} and denote it by $P_{\mathcal{M}}$.
- If I is the identity operator on \mathcal{H}, then $I-P_{\mathcal{M}}$ denotes the orthogonal projection to \mathcal{M}^{\perp} and the relation

$$
\begin{equation*}
\|f\|^{2}=\left\|P_{\mathcal{M}} f\right\|^{2}+\left\|\left(I-P_{\mathcal{M}}\right) f\right\|^{2} \tag{9}
\end{equation*}
$$

is satisfied for all $f \in \mathcal{H}$.

Hilbert Spaces

Sesqui-linear Form

Definition (Sesqui-linear Form)

A function $\Phi: \mathcal{H} \times \mathcal{G} \longrightarrow \mathbb{C}$ is a sesqui-linear form (or sesqui-linear function) if for $f, h \in \mathcal{H}, \quad g, k \in \mathcal{G}$ and $\alpha, \beta \in \mathbb{C}$,

$$
\begin{align*}
& \text { (i) } \Phi(\alpha f+\beta h, g)=\alpha \Phi(f, g)+\beta \Phi(h, g) \tag{10}\\
& \text { (ii) } \Phi(f, \alpha g+\beta k)=\bar{\alpha} \Phi(f, g)+\bar{\beta} \Phi(f, k) \tag{11}
\end{align*}
$$

are satisfied where \mathcal{H} and \mathcal{G} are Hilbert spaces.
Remark: If $L \in B(\mathcal{H}, \mathcal{G})$, then the sesqui-linear form Φ is defined by

$$
\begin{equation*}
\Phi(f, g)=\langle L f, g\rangle_{G} \tag{12}
\end{equation*}
$$

is bounded in the sense that

$$
\begin{equation*}
|\Phi(f, g)| \leq \lambda\|f\|_{\mathcal{H}}\|g\|_{\mathcal{G}} \quad \text { for } \quad f \in \mathcal{H}, g \in \mathcal{G} \tag{13}
\end{equation*}
$$

where $\lambda \geq\|L\|$.

Hilbert Spaces

Adjoint Operator, Isometric Property

By the definitions of L and L^{*}, it follows that

$$
\begin{equation*}
\langle L f, g\rangle_{\mathcal{G}}=\left\langle f, L^{*} g\right\rangle_{\mathcal{H}} \quad \text { for } \quad f \in \mathcal{H}, g \in \mathcal{G} \tag{14}
\end{equation*}
$$

- Adjoint Operator If $L \in B(\mathcal{H}, \mathcal{G})$, then the unique operator $L^{*} \in B(\mathcal{G}, \mathcal{H})$ satisfying

$$
\begin{equation*}
\Phi(f, g)=\left\langle f, L^{*} g\right\rangle_{\mathcal{H}} \text { for } f \in \mathcal{H}, g \in \mathcal{G} \tag{15}
\end{equation*}
$$

is called the adjoint of L.

- Isometric Property The adjoint operation is isometric if

$$
\begin{equation*}
\|L\|=\left\|L^{*}\right\| \quad \text { is satisfied. } \tag{16}
\end{equation*}
$$

- Remark Let \mathcal{H}, \mathcal{G} and \mathcal{K} be Hilbert spaces and $K \in B(\mathcal{G}, \mathcal{K})$ and $L \in B(\mathcal{H}, \mathcal{G})$ be given. Then

$$
\begin{gather*}
K L \in B(\mathcal{H}, \mathcal{K}) \text { and }(K L)^{*}=L^{*} K^{*} \tag{17}\\
\operatorname{Ker}(L)=\left(\operatorname{Ran}\left(L^{*}\right)\right)^{\perp} \text { and }(\operatorname{Ker}(L))^{\perp}=\operatorname{Clos}\left\{\operatorname{Ran}(L)^{*}\right\} \tag{18}
\end{gather*}
$$

where $\operatorname{Ker}(L)$ is the kernel of L and $\operatorname{Ran}(L)$ is the range of L.

Hilbert Spaces

Self-Adjoint Operator, Positive Definite Operator

- Self-Adjoint Operator A continuous linear operator L on a Hilbert space \mathcal{H} is said to be selfadjoint if $L=L^{*}$.
- L is self adjoint if and only if the associated sesqui-linear form Φ is Hermitian.
- If L is a continuous selfadjoint operator, then

$$
\begin{equation*}
\|L\|=\sup \{|\langle L f, f\rangle|:\|f\| \leq 1\} . \tag{19}
\end{equation*}
$$

- Positive Definite Operator A self-adjoint operator $L \in B(\mathcal{H})$ is said to be positive (or positive definite) if

$$
\begin{equation*}
\langle L f, f\rangle \geq 0 \text { for all } f \in \mathcal{H} . \tag{20}
\end{equation*}
$$

If $\langle L f, f\rangle=0$ only when $f=0$, then L is said to be strictly positive (or, strictly positive definite).

Hilbert Spaces

Isometry, Positive Definite Operator

- Isometry A linear operator U between Hilbert spaces \mathcal{H} and \mathcal{G} is called isometric or an isometry if

$$
\begin{equation*}
\|U f\|_{\mathcal{G}}=\|f\|_{\mathcal{H}} \quad \text { for } \quad f \in \mathcal{H} \tag{21}
\end{equation*}
$$

is satisfied, that is, it preserves the norm.

- For any positive operator $L \in B(\mathcal{H})$, the Schwartz inequality holds in the following sense

$$
\begin{equation*}
|\langle L f, g\rangle|^{2} \leq\langle L f, f\rangle \cdot\langle L g, g\rangle . \tag{22}
\end{equation*}
$$

- The equation (21) implies that a continuous linear operator U is isometric if and only if $U^{*} U=I_{\mathcal{H}}$, in other words,

$$
\begin{equation*}
\langle U f, U g\rangle_{\mathcal{G}}=\langle f, g\rangle_{\mathcal{H}} \text { for } f, g \in \mathcal{H}, \tag{23}
\end{equation*}
$$

that is, U preserves inner product.

Hilbert Spaces

Unitary Operator, Partial Isometry

- Unitary Operator A surjective isometry linear operator $U: \mathcal{H} \longrightarrow \mathcal{H}$ is called a unitary (operator).
- If $U \in B(H)$ is a unitary operator, then $U^{*}=U^{-1}$.
- Partial Isometry A continuous linear operator U between Hilbert spaces \mathcal{H} and \mathcal{G} is called a partial isometry if

$$
f \in(\operatorname{Ker} U)^{\perp}=\operatorname{Ran}\left(U^{*}\right) \Rightarrow\|U f\|=\|f\| .
$$

The space $(\operatorname{Ker} U)^{\perp}$ and $\operatorname{Ran}(U)$ are called the initial space of U and the final space of U, respectively.

- If U is partial isometry, then its adjoint U^{*} is also a partial isometry.
- Theorem Every continuous linear operator L on \mathcal{H} admits a unique decomposition

$$
\begin{equation*}
L=U \tilde{L} \tag{24}
\end{equation*}
$$

where \tilde{L} is positive definite operator and U is a partial isometry with initial space the closure of $\operatorname{Ran}(\tilde{L})$.

Part 2

Reproducing Kernels and RKHSs

- Definition and Basic Properties of Reproducing Kernel and RKHS
- Existence and Uniqueness of Reproducing Kernels and Associated RKHSs
- Properties and Some Important Theorems

This part is based on the following references:

- T. Ando, Reproducing Kernel Spaces and Quadratic Inequalities, Lecture Notes, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, Japan, 1987
- N. Aronszajn, Theory of reproducing kernels, TAMS Vol. 68, No.3, 1950, pp. 337-404
- S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications Springer, 2016.

RKHS

Definition (Reproducing Kernel)

Let \mathcal{H} be a Hilbert space of functions on a nonempty set X with the inner product $\langle f, g\rangle$ and norm

$$
\|f\|=\langle f, f\rangle^{1 / 2}
$$

for f and $g \in \mathcal{H}$. Then the complex valued function $K(x, y)$ of x and y in X is called a reproducing kernel of \mathcal{H} if
(i) for every $x \in X$, it follows that

$$
\begin{equation*}
K_{x}(\cdot)=K(x, \cdot) \in \mathcal{H} \tag{25}
\end{equation*}
$$

(ii) (reproducing property) for every $x \in X$ and every $f \in \mathcal{H}$,

$$
\begin{equation*}
f(x)=\left\langle f, K_{x}\right\rangle \tag{26}
\end{equation*}
$$

RKHS

Notation

Let K be a reproducing kernel. Applying

$$
f(x)=\left\langle f, K_{x}\right\rangle
$$

to the function K_{x} at y, we get

$$
\begin{equation*}
K_{x}(y)=\left\langle K_{x}, K_{y}\right\rangle=K(x, y), \text { for } x, y \in X \tag{27}
\end{equation*}
$$

Then, for any $x \in X$ we obtain

$$
\begin{equation*}
\left\|K_{x}\right\|=\left\langle K_{x}, K_{x}\right\rangle^{1 / 2}=K(x, x)^{1 / 2} \tag{28}
\end{equation*}
$$

Note: Observe that the subset $\left\{K_{x}\right\}_{x \in X}$ is total in \mathcal{H}, that is, its closed linear span coincides with \mathcal{H}. This follows from the fact that, if $f \in \mathcal{H}$ and $f \perp K_{x}$ for all $x \in X$, then

$$
f(x)=\left\langle f, K_{x}\right\rangle=0 \text { for all } x \in X,
$$

and hence f is the 0 element in \mathcal{H}. As a result, $\{0\}^{\perp}=\mathcal{H}$.

RKHS

RKHS and Existence of Associated Reproducing Kernel

Definition (RKHS)

A Hilbert space \mathcal{H} of functions on a set X is called a reproducing kernel Hilbert space (RKHS) if there exists a reproducing kernel K of \mathcal{H}.

Theorem (Existence of Reproducing Kernel)

There exists a reproducing kernel K for a Hilbert space \mathcal{H} of functions on X, if and only if for all $x \in X$, the linear functional

$$
\mathcal{H} \ni f \longmapsto f(x)
$$

of evaluation at x, is bounded on \mathcal{H}.

$$
\text { i.e. }\left|\left\langle f, K_{x}\right\rangle\right|=|f(x)| \leq C\|f(x)\|_{\mathcal{H}} \forall f \in \mathcal{H}
$$

RKHS

Proof of Existence of Reproducing Kernel

Proof: Suppose that K is the reproducing kernel for \mathcal{H}. By the reproducing property and the Schwarz inequality of the scalar product, for all $x \in X$,

$$
\begin{aligned}
|f(x)|=\left|\left\langle f, K_{x}\right\rangle\right| \leq\|f(x)\|\left\|K_{x}\right\| & =\|f(x)\|\left\langle K_{x}, K_{x}\right\rangle^{1 / 2} \\
& =\|f(x)\| K(x, x)^{1 / 2} \\
& =C\|f(x)\|
\end{aligned}
$$

$\forall f \in \mathcal{H}$ with $C=K(x, x)^{1 / 2}$.
Conversely, if for all $x \in X$ the evaluation $\mathcal{H} \ni f \mapsto f(x)$ is a bounded linear functional on \mathcal{H}, then by the Riesz Representation Theorem, for all $x \in X$ there exists a function g_{x} belonging to \mathcal{H} such that

$$
f(x)=\left\langle f, g_{x}\right\rangle
$$

If we put K_{x} instead of g_{x}, then for all $y \in X$, we get $K_{x}(y)=g_{x}(y)$. Hence K is a reproducing kernel for \mathcal{H}.

RKHS

Uniqueness of Reproducing Kernel

Theorem (Uniqueness of Reproducing Kernel)

If a Hilbert space \mathcal{H} of functions on a set X admits a reproducing kernel K, then this reproducing kernel K is uniquely determined by the Hilbert space \mathcal{H}.

Proof: Let \mathcal{H} be a RKHS with two reproducing kernels K and L. For any two points $x, y \in X$, we need to show that $K(x, y)=L(x, y)$. Using the properties of RKHS, $K_{x}, L_{x} \in \mathcal{H}$. Then

$$
\begin{aligned}
\left\|K_{x}-L_{x}\right\|_{\mathcal{H}}^{2} & =\left\langle K_{x}-L_{x}, K_{x}-L_{x}\right\rangle_{\mathcal{H}} \\
& =\left\langle K_{x}-L_{x}, K_{x}\right\rangle_{\mathcal{H}}-\left\langle K_{x}-L_{x}, L_{x}\right\rangle_{\mathcal{H}} \\
& =\left(K_{x}-L_{x}\right)(x)-\left(K_{x}-L_{x}\right)(x) \\
& =0
\end{aligned}
$$

Since \mathcal{H} is a Hilbert space, only the zero function has a norm equal to 0 . This shows that

$$
K_{x}=L_{x}
$$

as and hence

$$
K_{x}(y)=L_{x}(y) \quad \forall y \in X \quad \Longrightarrow \quad K(x, y)=L(x, y) .
$$

RKHS

Theorem (Uniqueness of RKHS)

For any positive definite kernel K on X, there exists a unique Hilbert space \mathcal{H}_{K} of functions on X with reproducing kernel K.

By the above theorem, if \mathcal{H} and \mathcal{G} are two RKHS having the same reproducing kernel K, then they are equal, i.e. $\mathcal{H}=\mathcal{G}$.
(For the proof, see Ando [1], Aronszajn [2] or Saitoh, [7]).

RKHS

Hermitian and Positive Definite Kernel

Let X be an arbitrary set and K be a kernel on X, that is,

$$
K: X \times X \rightarrow \mathbb{C}
$$

The kernel K is Hermitian if for any finite set of points $\left\{y_{1}, \ldots, y_{n}\right\} \subseteq X$ we have

$$
\sum_{i, j=1}^{n} \bar{\epsilon}_{j} \epsilon_{i} K\left(y_{j}, y_{i}\right) \in \mathbb{R} .
$$

K is positive definite, if for any complex numbers $\epsilon_{1}, \ldots, \epsilon_{n}$, we have

$$
\sum_{i, j=1}^{n} \bar{\epsilon}_{j} \epsilon_{i} K\left(y_{j}, y_{i}\right) \geq 0
$$

Note: The last inequality can be denoted by $[K(x, y)] \geq 0$ on X, or simply by $K \geq 0$ on X, or equivalently, we say that K is a positive definite matrix in the sense of E. H. Moore.

RKHS

Remark

From the previous inequality, it follows that for any finitely supported family of complex numbers $\left\{\epsilon_{x}\right\}_{x \in X}$ we have

$$
\begin{equation*}
\sum_{x, y \in X} \bar{\epsilon}_{y} \epsilon_{x} K(y, x) \geq 0 \tag{29}
\end{equation*}
$$

Theorem

The reproducing kernel K of a RKHS H is a positive definite matrix (in the sense of E.H. Moore)

Note: In the sense of Moore, a positive definite matrix satisfies the following:

- It is conjugate symmetric, that is, $K(x, y)=\overline{K(y, x)}$, for all $x, y \in \mathcal{H}$
- $K(x, x) \geq 0 \quad$ for all $\quad x \in \mathcal{H}$
- $|K(x, y)|^{2} \leq K(x, x) K(y, y) \quad$ for all $\quad x, y \in \mathcal{H}$

RKHS

Proof: For arbitrary finite set of points $\left\{y_{1}, \cdots, y_{n}\right\} \subseteq X$ and any complex numbers $\epsilon_{1}, \ldots, \epsilon_{n}$, we have

$$
\begin{aligned}
0 \leq\left\|\sum_{i=1}^{n} \epsilon_{i} K_{y_{i}}\right\|^{2} & =\left\langle\sum_{i=1}^{n} \epsilon_{i} K_{y_{i}}, \sum_{j=1}^{n} \epsilon_{j} K_{y_{j}}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i} \overline{\epsilon_{j}}\left\langle K_{y_{i}}, K_{y_{j}}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i} \overline{\epsilon_{j}} K\left(y_{i}, y_{j}\right)
\end{aligned}
$$

Hence

$$
\sum_{i, j=1}^{n} \bar{\epsilon}_{j} \epsilon_{i} K\left(y_{j}, y_{i}\right) \geq 0
$$

i.e. K is positive definite.

Properties of RKHS

Properties of RKHS

Given a reproducing kernel Hilbert space \mathcal{H} and its kernel $K(y, x)$ on X, then for all $x, y \in X$ we have
(i) $K(y, y) \geq 0$.
(ii) $K(y, x)=\overline{K(x, y)}$.
(iii) $|K(y, x)|^{2} \leq K(y, y) K(x, x)$, (Schwarz Inequality).
(iv) Let $x_{0} \in X$. Then the following statements are equivalent:
(a) $K\left(x_{0}, x_{0}\right)=0$.
(b) $K\left(y, x_{0}\right)=0$ for all $y \in X$.
(c) $f\left(x_{0}\right)=0$ for all $f \in \mathcal{H}$.

RKHS

Proof :

(i) and (ii) can be easily seen from the reproducing and norm properties (27) and (28), respectively.

For (iii) we use the Schwarz Inequality in \mathcal{H}. It follows that

$$
\begin{aligned}
|K(y, x)|^{2} & =\left|\left\langle K_{y}, K_{x}\right\rangle\right|^{2} \\
& \leq\left\|K_{y}\right\|\left\|K_{x}\right\|\left\|K_{y}\right\|\left\|K_{x}\right\| \\
& =\left\|K_{y}\right\|^{2}\left\|K_{x}\right\|^{2} \\
& =\left\langle K_{y}, K_{y}\right\rangle\left\langle K_{x}, K_{x}\right\rangle \\
& =K(y, y) K(x, x)
\end{aligned}
$$

As for (iv), it follows by (iii) that $K\left(x_{0}, x_{0}\right)=0$ is equivalent with $K\left(y, x_{0}\right)=0$ for all $y \in X$. Further, by the reproducing property we have that $K\left(y, x_{0}\right)=0$ for all $y \in X$ if and only if $f\left(x_{0}\right)=0$, for all f.

RKHS

Notation

The Hilbert space with reproducing kernel K is denoted by

$$
\mathcal{H}_{K}(X) .
$$

Moreover, the norm is denoted by

$$
\|\cdot\|_{K}=\|\cdot\|_{\mathcal{H}_{K}}
$$

and the inner product is denoted by

$$
\langle\cdot, \cdot\rangle_{K}=\langle\cdot, \cdot\rangle_{\mathcal{H}_{K}} .
$$

RKHS

Theorem

Every sequence of functions $\left(f_{n}\right)_{n \geq 1}$ that converges strongly to a function f in $\mathcal{H}_{K}(X)$, converges also in the pointwise sense, i.e., for any point $x \in X$,

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

In addition, this convergence is uniform on every subset of X on which $x \mapsto K(x, x)$ is bounded.

Proof:For $x \in X$, by the reproducing property and the Schwarz Inequality,

$$
\begin{aligned}
\left|f(x)-f_{n}(x)\right| & =\left|\left\langle f, K_{x}\right\rangle-\left\langle f_{n}, K_{x}\right\rangle\right| \\
& =\left|\left\langle f-f_{n}, K_{x}\right\rangle\right| \\
& \leq\left\|f-f_{n}\right\| \cdot\left\|K_{x}\right\| \\
& =\left\|f-f_{n}\right\| K(x, x)^{1 / 2}
\end{aligned}
$$

Hence $\lim f_{n}(x)=f(x)$, for any point $x \in X$. Moreover, it is clear from the above inequality that this convergence is uniform on every subset of X on which $x \mapsto K(x, x)$ is bounded.

Operations with RKHSs

Theorem

Let $K^{(0)}$ be the restriction of the positive definite kernel K to a nonempty subset X_{0} of X and let $\mathcal{H}_{K^{(0)}}(X)$ and $\mathcal{H}_{K}(X)$ be the RKHS corresponding to $K^{(0)}$ and K, respectively. Then

$$
\begin{equation*}
\mathcal{H}_{K^{(0)}}\left(X_{0}\right)=\left\{\left.f\right|_{x_{0}}: f \in \mathcal{H}_{K}(X)\right\} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|_{K^{(0)}}=\min \left\{\|f\|_{K}:\left.f\right|_{x_{0}}=h\right\} \quad \text { for all } h \in \mathcal{H}_{K^{(0)}}\left(X_{0}\right) . \tag{31}
\end{equation*}
$$

Remark

If $K^{(1)}(y, x)$ and $K^{(2)}(y, x)$ are two positive definite kernels, then

$$
K(y, x)=K^{(1)}(y, x)+K^{(2)}(y, x)
$$

is also a positive definite kernel.

Operations with RKHSs

Theorem

The tensor product Hilbert space

$$
\mathcal{H}_{K^{(1)}}(X) \otimes \mathcal{H}_{K^{(2)}}(X)
$$

is a RKHS on $X \times X$.
Take $g \in \mathcal{H}_{K^{(1)}}(X), h \in \mathcal{H}_{K^{(2)}}(X)$ and $x, x^{\prime} \in X$. It follows

$$
(g \otimes h)\left(x, x^{\prime}\right)=g(x) h\left(x^{\prime}\right)=\left\langle g, K_{x}^{(1)}\right\rangle\left\langle h, K_{x^{\prime}}^{(2)}\right\rangle=\left\langle g \otimes h, K_{x}^{(1)} \otimes K_{x^{\prime}}^{(2)}\right\rangle
$$

which shows that the tensor product Hilbert space $\mathcal{H}_{K^{(1)}}(X) \otimes \mathcal{H}_{K^{(2)}}(X)$ is a RKHS on $X \times X$.
Consider the map $\varphi: X \longrightarrow \mathcal{H}_{K^{(1)}}(X) \otimes \mathcal{H}_{K^{(2)}}(X)$ defined by $x \mapsto K_{X}^{(1)} \otimes K_{x}^{(2)}$. Then

$$
\begin{aligned}
K(y, x)=\left\langle\varphi_{x}, \varphi_{y}\right\rangle & =\left\langle K_{x}^{(1)} \otimes K_{x}^{(2)}, K_{y}^{(1)} \otimes K_{y}^{(2)}\right\rangle=\left\langle K_{x}^{(1)}, K_{y}^{(1)}\right\rangle \cdot\left\langle K_{x}^{(2)}, K_{y}^{(2)}\right\rangle \\
& =K^{(1)}(y, x) \cdot K^{(2)}(y, x) \text { for } x, y \in X .
\end{aligned}
$$

Hence the pointwise product of two positive definite kernels is again a positive definite kernel.

Bergman Space and Its Kernel

Definition (Bergman Space)

The space of all analytic functions f on Ω for which

$$
\iint_{\Omega}|f(z)|^{2} d x d y<\infty, \quad(z=x+i y)
$$

is satisfied, is called the Bergman space on Ω and denoted by $A^{2}(\Omega)$.

Definition (Bergman Kernel)

$A^{2}(\Omega)$ is a RKHS with respect to the inner product

$$
\langle f, g\rangle \equiv\langle f, g\rangle_{\Omega}:=\iint_{\Omega} f(z) \overline{g(z)} d x d y
$$

and its kernel is called the Bergman kernel on Ω and denoted by $B^{(\Omega)}(w, z)$.

Bergman Kernel

Bergman Kernel For the Unit Disc

The Bergman kernel for the open unit disc \mathbb{D} is given by

$$
\begin{equation*}
B^{(\mathbb{D})}(w, z)=\frac{1}{\pi} \frac{1}{(1-w \bar{z})^{2}} \quad \text { for } w, z \in \mathbb{D} \tag{32}
\end{equation*}
$$

Bergman Kernel of a Simply Connected Domain

The Bergman kernel of a simply connected domain $\Omega(\neq \mathbb{C})$ is given by

$$
\begin{equation*}
B^{(\Omega)}(w, z)=\frac{1}{\pi} \frac{\varphi^{\prime}(w) \overline{\varphi^{\prime}(z)}}{(1-\varphi(w) \overline{\varphi(z)})^{2}} \quad \text { for } \quad w, z \in \Omega \tag{33}
\end{equation*}
$$

where φ is any conformal mapping function from Ω onto \mathbb{D}.

References

圊 T．Ando，Reproducing Kernel Spaces and Quadratic Inequalities，Lecture Notes，Hokkaido University，Research Institute of Applied Electricity，Division of Applied Mathematics，Sapporo，Japan， 1987.

囯 N．Aronszajn，Theory of reproducing kernels，TAMS Vol．68，No．3，1950， pp．337－404．

國 J．B．Conway，A Course in Functional Analysis，Springer Verlag，Berlin－ Heidelberg－New York， 1989.

圊 P．L．Duren，A．Schuster，Bergman Spaces，Amer．Math．Soc．， Providence R．I． 2004.
－P．Koosis，Introduction to H_{p} Spaces，Cambridge Mathematical Press， Cambridge， 1970.
B．Okutmustur，，A Survey on Hilbert Spaces and Reproducing Kernels in Functional Calculus，London：Intech Open，2020，pp 61－77

目 S．Saitoh，Y．Sawano，Theory of Reproducing Kernels and Applications Springer， 2016.

