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Fundamental Concepts of Hilbert space

Vector Space, Inner Product and Inner Product Space, Metric
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Review of Linear Operator

Riesz Theorem

Some important definitions and operators

- This part is mostly based on the book ”A Course in Functional Analysis, Springer Verlag, Berlin - Heidelberg - New
York, 1989” by J.B. Conway.
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Review of Hilbert Spaces
Vector Space, Inner Product

Vector Space A vector space is a linear space that is closed under
vector addition and scalar multiplication. More precisely, if we denote
our linear space by H over the field C, then it follows that

(i) if x , y , z ∈ H, then

x + y = y + x ∈ H, x + (y + z) = (x + y) + z ∈ H;

(ii) if k is scalar, then k x ∈ H.

Inner Product Let H be a linear space over the complex field C. An
inner product on H is a two variable function
⟨·, ·⟩ : H×H → C, satisfying

1 ⟨f , g⟩ = ⟨g , f ⟩ for f , g ∈ H.
2 For α, β ∈ C and f , g , h ∈ H

⟨αf + βg , h⟩ = α⟨f , h⟩+ β⟨g , h⟩
⟨f , αg + βh⟩ = α⟨f , g⟩+ β⟨f , h⟩

3 ⟨f , f ⟩ ≥ 0 for f ∈ H and ⟨f , f ⟩ = 0 ⇐⇒ f = 0.
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Review of Hilbert Spaces
Pre-Hilbert Space, Norm, Properties of Norm

Pre-Hilbert Space A vector space with an inner product is called a
pre-Hillbert space (Inner product space) H over the complex field C.

Norm A norm on an inner product space H denoted by ∥ · ∥ is
defined by

∥f ∥ = ⟨f , f ⟩1/2 or ∥f ∥H = ⟨f , f ⟩1/2H

where f ∈ H and ⟨·, ·⟩ = ⟨·, ·⟩H denotes the inner product on H.

Properties of Norm For all f , g ∈ H, and λ ∈ C, we have

∥f ∥ ≥ 0. (The equality occurs only if f = 0).
∥λf ∥ = |λ|∥f ∥.
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Review of Hilbert Spaces
Some important Inequalities and Identities

Schwartz Inequality For all f , g ∈ H, it follows that

|⟨f , g⟩| ≤ ∥f ∥∥g∥. (1)

In case if f and g are linearly dependent, then the inequality
becomes equality.

Triangle Inequality For all f , g ∈ H, it follows that

∥f + g∥ ≤ ∥f ∥+ ∥g∥. (2)

In case if f and g are linearly dependent, then the inequality
becomes equality.

Polarization Identity For all f , g ∈ H, it follows that

⟨f , g⟩ = 1

4
(∥f + g∥2 − ∥f − g∥2 + i∥f + ig∥2 − ∥f − ig∥2) (3)

Parallelogram Identity For all f , g ∈ H, it follows that

∥f + g∥2 + ∥f − g∥2 = 2∥f ∥2 + 2∥g∥2. (4)
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Review of Hilbert Spaces
Properties of Metric

Metric A metric on a set X is a function d : X × X → R satisfying the
properties

1 d(x , y) ≥ 0 and d(x , y) = 0 only if x = y ;
2 d(x , y) = d(y , x);
3 d(x , y) ≤ d(x , z) + d(z , y);

for all x , y , z ∈ X . Moreover the space (X , d) is the associated metric space.

If we re-arrange the metric with its properties for the inner product space H,
then it follows that for all f , g , h ∈ H and for all λ ∈ C, where d satisfies all
requirements to be a metric, we have

1 d(f , g) ≥ 0 and equality occurs only if f = g .
2 d(f , g) = d(g , f ).
3 d(f , g) ≤ d(f , h) + d(h, g).
4 d(f − h, g − h) = d(f , g).
5 d(λf , λg) = |λ| · d(f , g).

So, every inner product space is a normed space, and hence also a metric
space.
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Review of Hilbert Spaces
Linear Operator

Linear Operator A map L from a linear space to another linear space
is called linear operator if

L(αf + βg) = αLf + βLg

is satisfied for all α, β ∈ C and for all f , g ∈ H. Some basic
properties of the linear operators are given in the following.

Continuous Operator An operator L is said to be continuous if it is
continuous at each point of its domain.
Lipschitz Constant of a Linear Operator If L is a linear operator
from H to G where H and G are pre-Hilbert spaces, then the Lipschitz
constant for L is its norm ∥L∥ and it is defined by

∥L∥ = sup{∥Lf ∥G/∥f ∥H : 0 ̸= f ∈ H}. (5)
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Review of Hilbert Spaces
Linear Operator

Theorem
Let L be a linear operator from the pre-Hilbert spaces H to G. Then the
followings are mutually equivalent:

(i) L is continuous

(ii) L is bounded, that is,

sup{∥Lf ∥G : ∥f ∥H ≤ k} < ∞

for 0 ≤ k < ∞.

(iii) L is Lipschitz continuous, that is,

∥Lf − Lg∥G ≤ λ∥f − g∥H,

where 0 ≤ λ < ∞ and f , g ∈ H.
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Review of Hilbert Spaces
Some Properties of Linear Operators

Let B(H,G) be the collection of all continuous linear operators from the
pre-Hilbert spaces H to G.

B(H,G) is a linear space with respect to the natural addition and scalar
multiplication satisfying

(αL+ βM)f = αLf + βMf ,

where L and M are linear operators, f ∈ H and α, β ∈ C.
Whenever H = G, then B(H,G) is denoted by B(H).

If K is another pre-Hilbert space, L ∈ B(H,G) and K ∈ B(G,K). Then the
product

(KL)f = K (Lf ) for f ∈ H ∈ B(H,K).

In addition,

(i) K (ξL+ ζM) = ξKL+ ζKM
(ii) ∥ξL∥ = |ξ| · ∥L∥
(iii) ∥L+M∥ ≤ ∥L∥+ ∥M∥ and
(iv) ∥KL∥ ≤ ∥K∥∥L∥.
are also satisfied (ξ, ζ ∈ C).

10 / 38



Review of Hilbert Spaces
Normed Space, Normed Algebra, Linear Functional

Normed Space Let L,M are linear operators, H,G pre-Hilbert spaces and
B(H,G) is a metric space with respect to the translation invariant,
positively homogenous distance function

d(L,M) := ∥L−M∥.

Then B(H,G) is a normed space with the operator norm.

Normed Algebra For each K ∈ B(G,K), the map L 7−→ KL becomes a
continuous linear operator from B(H,G) to B(H,K). In particular, B(H) is
a normed algebra

Linear Form (or Linear Functional) A linear operator from the pre-Hilbert
space H to the scalar field C is called a linear form (or linear functional).
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Hilbert Space
Pre-Hilbert Space

Definition
A pre-Hilbert space H is said to be a Hilbert space if it is complete in metric. In
other words if fn is a Cauchy sequence in H, that is, if

∥fn − fm∥ −→ 0 whenever n,m → ∞,

then there is f ∈ H such that

∥fn − f ∥ −→ 0 whenever n → ∞.

Remark
Every subspace of a pre-Hilbert space is also a pre-Hilbert space with respect
to the induced inner product. However, for a subspace of a Hilbert space to
be also a Hilbert space, it must be closed.

Every finite dimensional subspace of a Hilbert space H is closed.

12 / 38



Hilbert Spaces

Theorem

Let (Ω, µ) denotes a measure space so that Ω is the union of subsets of finite
positive measure and L2(Ω, µ) consists of all measurable functions f (ω) on Ω
such that ∫

Ω

|f (ω)|2 dµ(ω) < ∞. (6)

Then L2(Ω, µ) is a Hilbert space with respect to the inner product

⟨f , g⟩ :=
∫
Ω

f (ω) g(ω) dµ(ω). (7)

Theorem (F. Riesz)

For each continuous linear functional φ on a Hilbert space H, there exists
uniquely g ∈ H such that

φ(f ) = ⟨f , g⟩ for f ∈ H. (8)
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Hilbert Spaces
Total subsets, Orthogonal Projection

Total Subset of a Hilbert Space A subset A of a Hilbert space H is called
total in H if 0 is the only element that is orthogonal to all elements of A. In
other words,

A⊥ = {0}.
As a result, A is total if and only if every element of H can be approximated
by linear combinations of elements of A.

Orthogonal Projection If M is a closed subspace of H, the map f 7→ fM
gives a linear operator from H to M with norm ≤ 1. This operator is called
as the orthogonal projection to M and denote it by PM.

If I is the identity operator on H, then I − PM denotes the orthogonal
projection to M⊥ and the relation

∥f ∥2 = ∥PMf ∥2 + ∥(I − PM)f ∥2 (9)

is satisfied for all f ∈ H.
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Hilbert Spaces
Sesqui-linear Form

Definition (Sesqui-linear Form)

A function Φ : H×G −→ C is a sesqui-linear form (or sesqui-linear function) if
for f , h ∈ H, g , k ∈ G and α, β ∈ C,

(i) Φ(αf + βh, g) = αΦ(f , g) + βΦ(h, g) (10)

(ii) Φ(f , αg + βk) = αΦ(f , g) + βΦ(f , k) (11)

are satisfied where H and G are Hilbert spaces.

Remark: If L ∈ B(H,G), then the sesqui-linear form Φ is defined by

Φ(f , g) = ⟨Lf , g⟩G (12)

is bounded in the sense that

|Φ(f , g)| ≤ λ∥f ∥H∥g∥G for f ∈ H, g ∈ G, (13)

where λ ≥ ∥L∥.
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Hilbert Spaces
Adjoint Operator, Isometric Property

By the definitions of L and L∗, it follows that

⟨Lf , g⟩G = ⟨f , L∗g⟩H for f ∈ H, g ∈ G. (14)

Adjoint Operator If L ∈ B(H,G), then the unique operator L∗ ∈ B(G,H)
satisfying

Φ(f , g) = ⟨f , L∗g⟩H for f ∈ H, g ∈ G (15)

is called the adjoint of L.

Isometric Property The adjoint operation is isometric if

∥L∥ = ∥L∗∥ is satisfied. (16)

Remark Let H,G and K be Hilbert spaces and K ∈ B(G,K) and
L ∈ B(H,G) be given. Then

KL ∈ B(H,K) and (KL)∗ = L∗K∗ (17)

Ker(L) = (Ran(L∗))⊥ and (Ker(L))⊥ = Clos{Ran(L)∗} (18)

where Ker(L) is the kernel of L and Ran(L) is the range of L.
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Hilbert Spaces
Self-Adjoint Operator, Positive Definite Operator

Self-Adjoint Operator A continuous linear operator L on a Hilbert space H
is said to be selfadjoint if L = L∗.

L is self adjoint if and only if the associated sesqui-linear form Φ is
Hermitian.

If L is a continuous selfadjoint operator, then

∥L∥ = sup{|⟨Lf , f ⟩| : ∥f ∥ ≤ 1}. (19)

Positive Definite Operator A self-adjoint operator L ∈ B(H) is said to be
positive (or positive definite) if

⟨Lf , f ⟩ ≥ 0 for all f ∈ H. (20)

If ⟨Lf , f ⟩ = 0 only when f = 0, then L is said to be strictly positive (or,
strictly positive definite).
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Hilbert Spaces
Isometry, Positive Definite Operator

Isometry A linear operator U between Hilbert spaces H and G is called
isometric or an isometry if

∥Uf ∥G = ∥f ∥H for f ∈ H (21)

is satisfied, that is, it preserves the norm.

For any positive operator L ∈ B(H), the Schwartz inequality holds in the
following sense

|⟨Lf , g⟩|2 ≤ ⟨Lf , f ⟩ · ⟨Lg , g⟩. (22)

The equation (21) implies that a continuous linear operator U is isometric if
and only if U∗U = IH, in other words,

⟨Uf ,Ug⟩G = ⟨f , g⟩H for f , g ∈ H, (23)

that is, U preserves inner product.
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Hilbert Spaces
Unitary Operator, Partial Isometry

Unitary Operator A surjective isometry linear operator U : H −→ H is
called a unitary (operator).

If U ∈ B(H) is a unitary operator, then U∗ = U−1.

Partial Isometry A continuous linear operator U between Hilbert spaces H
and G is called a partial isometry if

f ∈ (KerU)⊥ = Ran(U∗) ⇒ ∥Uf ∥ = ∥f ∥.

The space (KerU)⊥ and Ran(U) are called the initial space of U and the
final space of U, respectively.

If U is partial isometry, then its adjoint U∗ is also a partial isometry.

Theorem Every continuous linear operator L on H admits a unique
decomposition

L = UL̃, (24)

where L̃ is positive definite operator and U is a partial isometry with initial
space the closure of Ran(L̃).
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Part 2

Reproducing Kernels and RKHSs

Definition and Basic Properties of Reproducing Kernel and RKHS

Existence and Uniqueness of Reproducing Kernels and Associated
RKHSs

Properties and Some Important Theorems

This part is based on the following references:

T. Ando, Reproducing Kernel Spaces and Quadratic Inequalities, Lecture Notes, Hokkaido University, Research Institute
of Applied Electricity, Division of Applied Mathematics, Sapporo, Japan, 1987

N. Aronszajn, Theory of reproducing kernels, TAMS Vol. 68, No.3, 1950, pp. 337-404

S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications Springer, 2016.
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RKHS

Definition (Reproducing Kernel)

Let H be a Hilbert space of functions on a nonempty set X with the inner
product ⟨f , g⟩ and norm

∥f ∥ = ⟨f , f ⟩1/2

for f and g ∈ H. Then the complex valued function K (x , y) of x and y in
X is called a reproducing kernel of H if

(i) for every x ∈ X , it follows that

Kx(·) = K (x , ·) ∈ H, (25)

(ii) (reproducing property) for every x ∈ X and every f ∈ H,

f (x) = ⟨f ,Kx⟩ (26)
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RKHS

Notation
Let K be a reproducing kernel. Applying

f (x) = ⟨f ,Kx⟩

to the function Kx at y , we get

Kx(y) = ⟨Kx ,Ky ⟩ = K (x , y), for x , y ∈ X . (27)

Then, for any x ∈ X we obtain

∥Kx∥ = ⟨Kx ,Kx⟩1/2 = K (x , x)1/2. (28)

Note: Observe that the subset {Kx}x∈X is total in H, that is, its closed linear
span coincides with H. This follows from the fact that, if f ∈ H and f ⊥ Kx for
all x ∈ X , then

f (x) = ⟨f ,Kx⟩ = 0 for all x ∈ X ,

and hence f is the 0 element in H. As a result, {0}⊥ = H.
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RKHS
RKHS and Existence of Associated Reproducing Kernel

Definition (RKHS)

A Hilbert space H of functions on a set X is called a reproducing kernel
Hilbert space (RKHS) if there exists a reproducing kernel K of H.

Theorem (Existence of Reproducing Kernel)

There exists a reproducing kernel K for a Hilbert space H of functions on
X , if and only if for all x ∈ X, the linear functional

H ∋ f 7−→ f (x)

of evaluation at x, is bounded on H.
i .e.|⟨f ,Kx⟩| = |f (x)| ≤ C∥f (x)∥H ∀f ∈ H
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RKHS
Proof of Existence of Reproducing Kernel

Proof: Suppose that K is the reproducing kernel for H. By the
reproducing property and the Schwarz inequality of the scalar product, for
all x ∈ X ,

|f (x)| = |⟨f ,Kx⟩| ≤ ∥f (x)∥∥Kx∥ = ∥f (x)∥⟨Kx ,Kx⟩1/2

= ∥f (x)∥K (x , x)1/2

= C∥f (x)∥

∀f ∈ H with C = K (x , x)1/2.
Conversely, if for all x ∈ X the evaluation H ∋ f 7→ f (x) is a bounded
linear functional on H, then by the Riesz Representation Theorem, for all
x ∈ X there exists a function gx belonging to H such that

f (x) = ⟨f , gx⟩.

If we put Kx instead of gx , then for all y ∈ X , we get Kx(y) = gx(y).
Hence K is a reproducing kernel for H.
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RKHS
Uniqueness of Reproducing Kernel

Theorem (Uniqueness of Reproducing Kernel)

If a Hilbert space H of functions on a set X admits a reproducing kernel K , then
this reproducing kernel K is uniquely determined by the Hilbert space H.

Proof: Let H be a RKHS with two reproducing kernels K and L. For any two
points x , y ∈ X , we need to show that K (x , y) = L(x , y). Using the properties of
RKHS, Kx , Lx ∈ H. Then

∥Kx − Lx∥2H = ⟨Kx − Lx ,Kx − Lx⟩H
= ⟨Kx − Lx ,Kx⟩H − ⟨Kx − Lx , Lx⟩H
= (Kx − Lx)(x)− (Kx − Lx)(x)

= 0

Since H is a Hilbert space, only the zero function has a norm equal to 0. This
shows that

Kx = Lx

as and hence

Kx(y) = Lx(y) ∀y ∈ X =⇒ K (x , y) = L(x , y). 25 / 38



RKHS
Uniqueness of RKHS

Theorem (Uniqueness of RKHS)

For any positive definite kernel K on X , there exists a unique Hilbert space
HK of functions on X with reproducing kernel K .

By the above theorem, if H and G are two RKHS having the same
reproducing kernel K , then they are equal, i.e. H = G.

(For the proof, see Ando [1], Aronszajn [2] or Saitoh, [7]).
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RKHS

Hermitian and Positive Definite Kernel
Let X be an arbitrary set and K be a kernel on X , that is,

K : X × X → C.

The kernel K is Hermitian if for any finite set of points {y1, . . . , yn} ⊆ X we have

n∑
i,j=1

ϵjϵiK (yj , yi ) ∈ R.

K is positive definite, if for any complex numbers ϵ1, . . . , ϵn, we have

n∑
i,j=1

ϵjϵiK (yj , yi ) ≥ 0.

Note: The last inequality can be denoted by [K (x , y)] ≥ 0 on X , or simply by
K ≥ 0 on X , or equivalently, we say that K is a positive definite matrix in the
sense of E. H. Moore.
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RKHS

Remark

From the previous inequality, it follows that for any finitely supported
family of complex numbers {ϵx}x∈X we have∑

x ,y∈X
ϵy ϵxK (y , x) ≥ 0. (29)

Theorem

The reproducing kernel K of a RKHS H is a positive definite matrix (in
the sense of E.H. Moore)

Note: In the sense of Moore, a positive definite matrix satisfies the
following:

It is conjugate symmetric, that is, K (x , y) = K (y , x), for all x , y ∈ H
K (x , x) ≥ 0 for all x ∈ H
|K (x , y)|2 ≤ K (x , x)K (y , y) for all x , y ∈ H
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RKHS

Proof: For arbitrary finite set of points {y1, · · · , yn} ⊆ X and any
complex numbers ϵ1, . . . , ϵn, we have

0 ≤ ∥
n∑

i=1

ϵiKyi∥
2 = ⟨

n∑
i=1

ϵiKyi ,

n∑
j=1

ϵjKyj ⟩

=
n∑

i=1

n∑
j=1

ϵiϵj⟨Kyi ,Kyj ⟩

=
n∑

i=1

n∑
j=1

ϵiϵjK (yi , yj)

Hence
n∑

i ,j=1

ϵjϵiK (yj , yi ) ≥ 0.

i.e. K is positive definite.
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Properties of RKHS

Properties of RKHS

Given a reproducing kernel Hilbert space H and its kernel K (y , x) on X , then for
all x , y ∈ X we have

(i) K (y , y) ≥ 0.

(ii) K (y , x) = K (x , y).

(iii) |K (y , x)|2 ≤ K (y , y)K (x , x), (Schwarz Inequality).

(iv) Let x0 ∈ X . Then the following statements are equivalent:

(a) K (x0, x0) = 0.
(b) K (y , x0) = 0 for all y ∈ X .
(c) f (x0) = 0 for all f ∈ H.
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RKHS

Proof :
(i) and (ii) can be easily seen from the reproducing and norm properties
(27) and (28), respectively.
For (iii) we use the Schwarz Inequality in H. It follows that

|K (y , x)|2 = |⟨Ky ,Kx⟩|2

≤ ∥Ky∥∥Kx∥∥Ky∥∥Kx∥
= ∥Ky∥2∥Kx∥2

= ⟨Ky ,Ky ⟩⟨Kx ,Kx⟩
= K (y , y)K (x , x)

As for (iv), it follows by (iii) that K (x0, x0) = 0 is equivalent with
K (y , x0) = 0 for all y ∈ X . Further, by the reproducing property we have
that K (y , x0) = 0 for all y ∈ X if and only if f (x0) = 0, for all f .
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RKHS

Notation

The Hilbert space with reproducing kernel K is denoted by

HK (X ).

Moreover, the norm is denoted by

∥ · ∥K = ∥ · ∥HK

and the inner product is denoted by

⟨·, ·⟩K = ⟨·, ·⟩HK
.
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RKHS

Theorem

Every sequence of functions (fn)n≥1 that converges strongly to a function f in
HK (X ), converges also in the pointwise sense, i.e., for any point x ∈ X,

lim
n→∞

fn(x) = f (x).

In addition, this convergence is uniform on every subset of X on which
x 7→ K (x , x) is bounded.

Proof:For x ∈ X , by the reproducing property and the Schwarz Inequality,

|f (x)− fn(x)| = |⟨f ,Kx⟩ − ⟨fn,Kx⟩|
= |⟨f − fn,Kx⟩|
≤ ∥f − fn∥ · ∥Kx∥
= ∥f − fn∥K (x , x)1/2

Hence lim fn(x) = f (x), for any point x ∈ X . Moreover, it is clear from the above
inequality that this convergence is uniform on every subset of X on which
x 7→ K (x , x) is bounded.
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Operations with RKHSs

Theorem

Let K (0) be the restriction of the positive definite kernel K to a nonempty
subset X0 of X and let HK (0)(X ) and HK (X ) be the RKHS corresponding
to K (0) and K, respectively. Then

HK (0)(X0) = {f |X0 : f ∈ HK (X )} (30)

and
∥h∥K (0) = min{∥f ∥K : f |X0 = h} for all h ∈ HK (0)(X0). (31)

Remark

If K (1)(y , x) and K (2)(y , x) are two positive definite kernels, then

K (y , x) = K (1)(y , x) + K (2)(y , x)

is also a positive definite kernel.
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Operations with RKHSs

Theorem
The tensor product Hilbert space

HK (1)(X )⊗HK (2)(X )

is a RKHS on X × X.

Take g ∈ HK (1)(X ), h ∈ HK (2)(X ) and x , x ′ ∈ X . It follows

(g ⊗ h)(x , x ′) = g(x)h(x ′) = ⟨g ,K (1)
x ⟩⟨h,K (2)

x′ ⟩ = ⟨g ⊗ h,K (1)
x ⊗ K

(2)
x′ ⟩

which shows that the tensor product Hilbert space HK (1)(X )⊗HK (2)(X ) is a
RKHS on X × X .
Consider the map φ : X −→ HK (1)(X )⊗HK (2)(X ) defined by x 7→ K

(1)
x ⊗ K

(2)
x .

Then

K (y , x) = ⟨φx , φy ⟩ = ⟨K (1)
x ⊗ K (2)

x ,K (1)
y ⊗ K (2)

y ⟩ = ⟨K (1)
x ,K (1)

y ⟩ · ⟨K (2)
x ,K (2)

y ⟩

= K (1)(y , x) · K (2)(y , x) for x , y ∈ X .

Hence the pointwise product of two positive definite kernels is again a positive
definite kernel.
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Bergman Space and Its Kernel

Definition (Bergman Space)

The space of all analytic functions f on Ω for which∫∫
Ω
|f (z)|2dxdy < ∞, (z = x + iy)

is satisfied, is called the Bergman space on Ω and denoted by A2(Ω).

Definition (Bergman Kernel)

A2(Ω) is a RKHS with respect to the inner product

⟨f , g⟩ ≡ ⟨f , g⟩Ω :=

∫∫
Ω
f (z)g(z)dxdy

and its kernel is called the Bergman kernel on Ω and denoted by
B(Ω)(w , z).
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Bergman Kernel

Bergman Kernel For the Unit Disc

The Bergman kernel for the open unit disc D is given by

B(D)(w , z) =
1

π

1

(1− wz)2
for w , z ∈ D. (32)

Bergman Kernel of a Simply Connected Domain

The Bergman kernel of a simply connected domain Ω(̸= C) is given by

B(Ω)(w , z) =
1

π

φ
′
(w)φ′(z)(

1− φ(w)φ(z)
)2 for w , z ∈ Ω, (33)

where φ is any conformal mapping function from Ω onto D.
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