Fundamental Properties of Reproducing Kernels and RKHSs

Baver Okutmustur

Middle East Technical University (METU), Ankara

Outline

- Part 1: Fundamental Concepts of Hilbert space
 - Vector Space, Inner Product and Inner Product Space, Metric
 - Hilbert Space
 - Review of Linear Operator
 - Riesz Theorem
 - Some important definitions and operators
- Part 2: Reproducing kernels and RKHSs
 - Definition and Basic Properties of Reproducing Kernel and RKHS
 - Existence and Uniqueness of Reproducing Kernels and Associated RKHSs
 - Properties and Some Important Theorems

Fundamental Concepts of Hilbert space

- Vector Space, Inner Product and Inner Product Space, Metric
- Hilbert Space
- Review of Linear Operator
- Riesz Theorem
- Some important definitions and operators

⁻ This part is mostly based on the book "A Course in Functional Analysis, Springer Verlag, Berlin - Heidelberg - New York, 1989" by J.B. Conway.

Vector Space, Inner Product

- Vector Space A vector space is a linear space that is closed under vector addition and scalar multiplication. More precisely, if we denote our linear space by \mathcal{H} over the field \mathbb{C} , then it follows that
 - (i) if $x, y, z \in \mathcal{H}$, then

$$x + y = y + x \in \mathcal{H}, \quad x + (y + z) = (x + y) + z \in \mathcal{H};$$

• (ii) if k is scalar, then
$$k x \in \mathcal{H}$$
.

Inner Product Let H be a linear space over the complex field C. An inner product on H is a two variable function

⟨·,·⟩: H × H → C, satisfying
⟨f,g⟩ = ⟨g,f⟩ for f,g ∈ H.

(a f + βg, h⟩ = α⟨f, h⟩ + β⟨g, h⟩

⟨af + βg, h⟩ = α⟨f, g⟩ + β⟨f, h⟩
⟨f, αg + βh⟩ = ā⟨f, g⟩ + β⟨f, h⟩

⟨f, f⟩ ≥ 0 for f ∈ H and ⟨f, f⟩ = 0 ⟺ f = 0.

Pre-Hilbert Space, Norm, Properties of Norm

- Pre-Hilbert Space A vector space with an inner product is called a pre-Hillbert space (Inner product space) H over the complex field C.
- Norm A norm on an inner product space *H* denoted by || · || is defined by

$$\|f\| = \langle f, f \rangle^{1/2}$$
 or $\|f\|_{\mathcal{H}} = \langle f, f \rangle_{\mathcal{H}}^{1/2}$

where $f \in \mathcal{H}$ and $\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\mathcal{H}}$ denotes the inner product on \mathcal{H} .

- Properties of Norm For all $f, g \in \mathcal{H}$, and $\lambda \in \mathbb{C}$, we have
 - $||f|| \ge 0$. (The equality occurs only if f = 0).
 - $\|\lambda f\| = |\lambda| \|f\|.$

Some important Inequalities and Identities

Schwartz Inequality For all $f, g \in \mathcal{H}$, it follows that

 $|\langle f,g\rangle| \le \|f\| \|g\|. \tag{1}$

In case if f and g are linearly dependent, then the inequality becomes equality.

Triangle Inequality For all $f, g \in \mathcal{H}$, it follows that

$$\|f + g\| \le \|f\| + \|g\|.$$
(2)

In case if f and g are linearly dependent, then the inequality becomes equality.

Polarization Identity For all $f, g \in \mathcal{H}$, it follows that

$$\langle f,g \rangle = \frac{1}{4} (\|f+g\|^2 - \|f-g\|^2 + i\|f+ig\|^2 - \|f-ig\|^2)$$
 (3)

Parallelogram Identity For all $f, g \in \mathcal{H}$, it follows that

$$\|f + g\|^{2} + \|f - g\|^{2} = 2\|f\|^{2} + 2\|g\|^{2}.$$
 (4)

Properties of Metric

Metric A metric on a set X is a function d : X × X → ℝ satisfying the properties

for all $x, y, z \in X$. Moreover the space (X, d) is the associated metric space.

If we re-arrange the metric with its properties for the inner product space *H*, then it follows that for all *f*, *g*, *h* ∈ *H* and for all λ ∈ C, where *d* satisfies all requirements to be a metric, we have

d(f,g) ≥ 0 and equality occurs only if f = g.
 d(f,g) = d(g, f).
 d(f,g) ≤ d(f,h) + d(h,g).
 d(f - h,g - h) = d(f,g).
 d(λf, λg) = |λ| ⋅ d(f,g).

So, every inner product space is a normed space, and hence also a metric space.

Review of Hilbert Spaces Linear Operator

• Linear Operator A map L from a linear space to another linear space is called *linear operator* if

$$L(\alpha f + \beta g) = \alpha L f + \beta L g$$

is satisfied for all α , $\beta \in \mathbb{C}$ and for all $f, g \in \mathcal{H}$. Some basic properties of the linear operators are given in the following.

- **Continuous Operator** An operator *L* is said to be continuous if it is continuous at each point of its domain.
- Lipschitz Constant of a Linear Operator If *L* is a linear operator from \mathcal{H} to \mathcal{G} where \mathcal{H} and \mathcal{G} are pre-Hilbert spaces, then the Lipschitz constant for *L* is its norm ||L|| and it is defined by

$$\|L\| = \sup\{\|Lf\|_{\mathcal{G}}/\|f\|_{\mathcal{H}} : 0 \neq f \in \mathcal{H}\}.$$
(5)

Linear Operator

Theorem

Let L be a linear operator from the pre-Hilbert spaces \mathcal{H} to \mathcal{G} . Then the followings are mutually equivalent:

- (i) L is continuous
- (ii) L is bounded, that is,

$$\sup\{\|Lf\|_{G}:\|f\|_{H}\leq k\}$$
 < ∞

for $0 \le k < \infty$.

(iii) L is Lipschitz continuous, that is,

$$\|Lf - Lg\|_G \leq \lambda \|f - g\|_{\mathcal{H}},$$

where $0 \leq \lambda < \infty$ and $f, g \in \mathcal{H}$.

Some Properties of Linear Operators

Let $B(\mathcal{H}, \mathcal{G})$ be the collection of all continuous linear operators from the pre-Hilbert spaces \mathcal{H} to \mathcal{G} .

 B(H,G) is a linear space with respect to the natural addition and scalar multiplication satisfying

$$(\alpha L + \beta M)f = \alpha Lf + \beta Mf,$$

where L and M are linear operators, $f \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{C}$.

- Whenever $\mathcal{H} = \mathcal{G}$, then $B(\mathcal{H}, \mathcal{G})$ is denoted by $B(\mathcal{H})$.
- If \mathcal{K} is another pre-Hilbert space, $L \in B(\mathcal{H}, \mathcal{G})$ and $K \in B(\mathcal{G}, \mathcal{K})$. Then the product

$$(KL)f = K(Lf)$$
 for $f \in \mathcal{H} \in B(\mathcal{H}, \mathcal{K})$.

In addition,

(i)
$$K(\xi L + \zeta M) = \xi KL + \zeta KM$$

(ii) $\|\xi L\| = |\xi| \cdot \|L\|$
(iii) $\|L + M\| \le \|L\| + \|M\|$ and
(iv) $\|KL\| \le \|K\|\|L\|$.
are also satisfied $(\xi, \zeta \in \mathbb{C})$.

Normed Space, Normed Algebra, Linear Functional

• Normed Space Let *L*, *M* are linear operators, *H*, *G* pre-Hilbert spaces and *B*(*H*, *G*) is a metric space with respect to the translation invariant, positively homogenous distance function

$$d(L,M):=\|L-M\|.$$

Then $B(\mathcal{H},\mathcal{G})$ is a normed space with the operator norm.

- Normed Algebra For each K ∈ B(G, K), the map L → KL becomes a continuous linear operator from B(H, G) to B(H, K). In particular, B(H) is a normed algebra
- Linear Form (or Linear Functional) A linear operator from the pre-Hilbert space \mathcal{H} to the scalar field \mathbb{C} is called a *linear form* (or *linear functional*).

Definition

A pre-Hilbert space \mathcal{H} is said to be a *Hilbert space* if it is complete in metric. In other words if f_n is a Cauchy sequence in \mathcal{H} , that is, if

 $||f_n - f_m|| \longrightarrow 0$ whenever $n, m \to \infty$,

then there is $f \in \mathcal{H}$ such that

 $||f_n - f|| \longrightarrow 0$ whenever $n \to \infty$.

Remark

- Every subspace of a pre-Hilbert space is also a pre-Hilbert space with respect to the induced inner product. However, for a subspace of a Hilbert space to be also a Hilbert space, it must be closed.
- Every finite dimensional subspace of a Hilbert space \mathcal{H} is closed.

Theorem

Let (Ω, μ) denotes a measure space so that Ω is the union of subsets of finite positive measure and $L^2(\Omega, \mu)$ consists of all measurable functions $f(\omega)$ on Ω such that

$$\int_{\Omega} |f(\omega)|^2 \, d\mu(\omega) < \infty. \tag{6}$$

Then $L^2(\Omega,\mu)$ is a Hilbert space with respect to the inner product

$$\langle f, g \rangle := \int_{\Omega} f(\omega) \,\overline{g(\omega)} \, d\mu(\omega).$$
 (7)

Theorem (F. Riesz)

For each continuous linear functional φ on a Hilbert space \mathcal{H} , there exists uniquely $g \in \mathcal{H}$ such that

$$\varphi(f) = \langle f, g \rangle \text{ for } f \in \mathcal{H}.$$
(8)

Total subsets, Orthogonal Projection

• Total Subset of a Hilbert Space A subset A of a Hilbert space H is called *total* in H if 0 is the only element that is orthogonal to all elements of A. In other words,

$$\mathcal{A}^{\perp} = \{0\}.$$

As a result, A is total if and only if every element of H can be approximated by linear combinations of elements of A.

- Orthogonal Projection If \mathcal{M} is a closed subspace of \mathcal{H} , the map $f \mapsto f_{\mathcal{M}}$ gives a linear operator from \mathcal{H} to \mathcal{M} with norm ≤ 1 . This operator is called as the *orthogonal projection* to \mathcal{M} and denote it by $P_{\mathcal{M}}$.
- If *I* is the identity operator on \mathcal{H} , then $I P_{\mathcal{M}}$ denotes the orthogonal projection to \mathcal{M}^{\perp} and the relation

$$||f||^{2} = ||P_{\mathcal{M}}f||^{2} + ||(I - P_{\mathcal{M}})f||^{2}$$
(9)

is satisfied for all $f \in \mathcal{H}$.

Hilbert Spaces Sesqui-linear Form

Definition (Sesqui-linear Form)

A function $\Phi : \mathcal{H} \times \mathcal{G} \longrightarrow \mathbb{C}$ is a sesqui-linear form (or sesqui-linear function) if for $f, h \in \mathcal{H}, g, k \in \mathcal{G}$ and $\alpha, \beta \in \mathbb{C}$,

(i)
$$\Phi(\alpha f + \beta h, g) = \alpha \Phi(f, g) + \beta \Phi(h, g)$$
 (10)

(ii)
$$\Phi(f, \alpha g + \beta k) = \overline{\alpha} \Phi(f, g) + \overline{\beta} \Phi(f, k)$$
 (11)

are satisfied where ${\cal H}$ and ${\cal G}$ are Hilbert spaces.

Remark: If $L \in B(\mathcal{H}, \mathcal{G})$, then the sesqui-linear form Φ is defined by

$$\Phi(f,g) = \langle Lf,g \rangle_G \tag{12}$$

is bounded in the sense that

$$|\Phi(f,g)| \le \lambda \|f\|_{\mathcal{H}} \|g\|_{\mathcal{G}} \quad \text{for} \ f \in \mathcal{H}, \ g \in \mathcal{G},$$
(13)

where $\lambda \geq \|L\|$.

Adjoint Operator, Isometric Property

By the definitions of L and L^* , it follows that

$$\langle Lf, g \rangle_{\mathcal{G}} = \langle f, L^*g \rangle_{\mathcal{H}} \text{ for } f \in \mathcal{H}, g \in \mathcal{G}.$$
 (14)

Adjoint Operator If L ∈ B(H, G), then the unique operator L^{*} ∈ B(G, H) satisfying

$$\Phi(f,g) = \langle f, L^*g \rangle_{\mathcal{H}} \text{ for } f \in \mathcal{H}, g \in \mathcal{G}$$
(15)

is called the *adjoint* of *L*.

• Isometric Property The adjoint operation is isometric if

$$\|L\| = \|L^*\| \quad \text{is satisfied.} \tag{16}$$

• **Remark** Let \mathcal{H}, \mathcal{G} and \mathcal{K} be Hilbert spaces and $K \in B(\mathcal{G}, \mathcal{K})$ and $L \in B(\mathcal{H}, \mathcal{G})$ be given. Then

$$KL \in B(\mathcal{H}, \mathcal{K})$$
 and $(KL)^* = L^*K^*$ (17)

$$\mathsf{Ker}(L) = (\mathsf{Ran}(L^*))^{\perp} \text{ and } (\mathsf{Ker}(L))^{\perp} = \mathsf{Clos}\{\mathsf{Ran}(L)^*\} \tag{18}$$

where Ker(L) is the kernel of L and Ran(L) is the range of L.

Self-Adjoint Operator, Positive Definite Operator

- Self-Adjoint Operator A continuous linear operator *L* on a Hilbert space *H* is said to be *selfadjoint* if *L* = *L*^{*}.
- L is self adjoint if and only if the associated sesqui-linear form Φ is Hermitian.
- If *L* is a continuous selfadjoint operator, then

$$\|L\| = \sup\{|\langle Lf, f \rangle| : \|f\| \le 1\}.$$
(19)

Positive Definite Operator A self-adjoint operator L ∈ B(H) is said to be positive (or positive definite) if

$$\langle Lf, f \rangle \ge 0 \text{ for all } f \in \mathcal{H}.$$
 (20)

If $\langle Lf, f \rangle = 0$ only when f = 0, then L is said to be *strictly positive* (or, *strictly positive definite*).

Isometry, Positive Definite Operator

• Isometry A linear operator U between Hilbert spaces H and G is called *isometric* or an *isometry* if

$$\|Uf\|_{\mathcal{G}} = \|f\|_{\mathcal{H}} \quad \text{for} \quad f \in \mathcal{H}$$
(21)

is satisfied, that is, it preserves the norm.

• For any positive operator $L \in B(\mathcal{H})$, the Schwartz inequality holds in the following sense

$$|\langle Lf,g\rangle|^2 \leq \langle Lf,f\rangle \cdot \langle Lg,g\rangle.$$
 (22)

 The equation (21) implies that a continuous linear operator U is isometric if and only if U^{*}U = I_H, in other words,

$$\langle Uf, Ug \rangle_{\mathcal{G}} = \langle f, g \rangle_{\mathcal{H}} \text{ for } f, g \in \mathcal{H},$$
 (23)

that is, U preserves inner product.

Unitary Operator, Partial Isometry

- Unitary Operator A surjective isometry linear operator U : H → H is called a *unitary (operator)*.
- If $U \in B(H)$ is a unitary operator, then $U^* = U^{-1}$.
- **Partial Isometry** A continuous linear operator *U* between Hilbert spaces *H* and *G* is called a *partial isometry* if

$$f \in (\operatorname{Ker} U)^{\perp} = \operatorname{Ran}(U^*) \Rightarrow ||Uf|| = ||f||.$$

The space $(\text{Ker } U)^{\perp}$ and Ran(U) are called the *initial space* of U and the *final space* of U, respectively.

- If U is partial isometry, then its adjoint U^* is also a partial isometry.
- **Theorem** Every continuous linear operator L on \mathcal{H} admits a unique decomposition

$$L = U\tilde{L}, \tag{24}$$

where \tilde{L} is positive definite operator and U is a partial isometry with initial space the closure of $\operatorname{Ran}(\tilde{L})$.

Part 2

Reproducing Kernels and RKHSs

- Definition and Basic Properties of Reproducing Kernel and RKHS
- Existence and Uniqueness of Reproducing Kernels and Associated RKHSs
- Properties and Some Important Theorems

This part is based on the following references:

- T. Ando, Reproducing Kernel Spaces and Quadratic Inequalities, Lecture Notes, Hokkaido University, Research Institute
 of Applied Electricity, Division of Applied Mathematics, Sapporo, Japan, 1987
- N. Aronszajn, Theory of reproducing kernels, TAMS Vol. 68, No.3, 1950, pp. 337-404
- S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications Springer, 2016.

Definition (Reproducing Kernel)

Let ${\mathcal H}$ be a Hilbert space of functions on a nonempty set X with the inner product $\langle f,g\rangle$ and norm

$$\|f\| = \langle f, f \rangle^{1/2}$$

for f and $g \in \mathcal{H}$. Then the complex valued function K(x, y) of x and y in X is called a **reproducing kernel of** \mathcal{H} if

(i) for every $x \in X$, it follows that

$$K_{x}(\cdot) = K(x, \cdot) \in \mathcal{H},$$
 (25)

(ii) (reproducing property) for every $x \in X$ and every $f \in \mathcal{H}$,

$$f(x) = \langle f, K_x \rangle \tag{26}$$

Notation

Let K be a reproducing kernel. Applying

$$f(x) = \langle f, K_x \rangle$$

to the function K_x at y, we get

$$K_x(y) = \langle K_x, K_y \rangle = K(x, y), \text{ for } x, y \in X.$$
 (27)

Then, for any $x \in X$ we obtain

$$\|K_x\| = \langle K_x, K_x \rangle^{1/2} = K(x, x)^{1/2}.$$
 (28)

Note: Observe that the subset $\{K_x\}_{x \in X}$ is **total** in \mathcal{H} , that is, its closed linear span coincides with \mathcal{H} . This follows from the fact that, if $f \in \mathcal{H}$ and $f \perp K_x$ for all $x \in X$, then

$$f(x) = \langle f, K_x \rangle = 0$$
 for all $x \in X$,

and hence f is the 0 element in \mathcal{H} . As a result, $\{0\}^{\perp} = \mathcal{H}$.

Definition (RKHS)

A Hilbert space \mathcal{H} of functions on a set X is called a *reproducing kernel Hilbert space* (RKHS) if there exists a reproducing kernel K of \mathcal{H} .

Theorem (Existence of Reproducing Kernel)

There exists a reproducing kernel K for a Hilbert space \mathcal{H} of functions on X, if and only if for all $x \in X$, the linear functional

$$\mathcal{H} \ni f \longmapsto f(x)$$

of evaluation at x, is bounded on \mathcal{H} . i.e. $|\langle f, K_x \rangle| = |f(x)| \le C \|f(x)\|_{\mathcal{H}} \ \forall f \in \mathcal{H}$

Proof of Existence of Reproducing Kernel

Proof: Suppose that *K* is the reproducing kernel for \mathcal{H} . By the reproducing property and the Schwarz inequality of the scalar product, for all $x \in X$,

$$\begin{split} |f(x)| &= |\langle f, K_x \rangle| \le \|f(x)\| \|K_x\| = \|f(x)\| \langle K_x, K_x \rangle^{1/2} \\ &= \|f(x)\| K(x, x)^{1/2} \\ &= C \|f(x)\| \end{split}$$

 $\forall f \in \mathcal{H} \text{ with } C = K(x, x)^{1/2}.$

Conversely, if for all $x \in X$ the evaluation $\mathcal{H} \ni f \mapsto f(x)$ is a bounded linear functional on \mathcal{H} , then by the Riesz Representation Theorem, for all $x \in X$ there exists a function g_x belonging to \mathcal{H} such that

$$f(x) = \langle f, g_x \rangle.$$

If we put K_x instead of g_x , then for all $y \in X$, we get $K_x(y) = g_x(y)$. Hence K is a reproducing kernel for \mathcal{H} .

Uniqueness of Reproducing Kernel

Theorem (Uniqueness of Reproducing Kernel)

If a Hilbert space \mathcal{H} of functions on a set X admits a reproducing kernel K, then this reproducing kernel K is uniquely determined by the Hilbert space \mathcal{H} .

Proof: Let \mathcal{H} be a RKHS with two reproducing kernels K and L. For any two points $x, y \in X$, we need to show that K(x, y) = L(x, y). Using the properties of RKHS, $K_x, L_x \in \mathcal{H}$. Then

$$\begin{split} \|K_x - L_x\|_{\mathcal{H}}^2 &= \langle K_x - L_x, K_x - L_x \rangle_{\mathcal{H}} \\ &= \langle K_x - L_x, K_x \rangle_{\mathcal{H}} - \langle K_x - L_x, L_x \rangle_{\mathcal{H}} \\ &= (K_x - L_x)(x) - (K_x - L_x)(x) \\ &= 0 \end{split}$$

Since $\ensuremath{\mathcal{H}}$ is a Hilbert space, only the zero function has a norm equal to 0. This shows that

$$K_x = L_x$$

as and hence

$$\mathcal{K}_x(y) = \mathcal{L}_x(y) \quad \forall y \in X \implies \mathcal{K}(x,y) = \mathcal{L}(x,y).$$

Theorem (Uniqueness of RKHS)

For any positive definite kernel K on X, there exists a unique Hilbert space \mathcal{H}_K of functions on X with reproducing kernel K.

By the above theorem, if \mathcal{H} and \mathcal{G} are two RKHS having the same reproducing kernel K, then they are equal, i.e. $\mathcal{H} = \mathcal{G}$.

(For the proof, see Ando [1], Aronszajn [2] or Saitoh, [7]).

Hermitian and Positive Definite Kernel

Let X be an arbitrary set and K be a kernel on X, that is,

 $K: X \times X \to \mathbb{C}.$

The kernel K is **Hermitian** if for any finite set of points $\{y_1, \ldots, y_n\} \subseteq X$ we have

$$\sum_{i,j=1}^n \overline{\epsilon}_j \epsilon_i K(y_j, y_i) \in \mathbb{R}.$$

K is **positive definite**, if for any complex numbers $\epsilon_1, \ldots, \epsilon_n$, we have

$$\sum_{i,j=1}^n \overline{\epsilon}_j \epsilon_i K(y_j, y_i) \ge 0.$$

Note: The last inequality can be denoted by $[K(x, y)] \ge 0$ on X, or simply by $K \ge 0$ on X, or equivalently, we say that K is a positive definite matrix in the sense of **E. H. Moore**.

Remark

From the previous inequality, it follows that for any finitely supported family of complex numbers $\{\epsilon_x\}_{x\in X}$ we have

$$\sum_{\langle x,y \in X} \overline{\epsilon}_y \epsilon_x K(y,x) \ge 0.$$
(29)

Theorem

The reproducing kernel K of a RKHS \mathcal{H} is a positive definite matrix (in the sense of E.H. Moore)

Note: In the sense of Moore, a positive definite matrix satisfies the following:

- It is conjugate symmetric, that is, $K(x, y) = \overline{K(y, x)}$, for all $x, y \in \mathcal{H}$
- $K(x,x) \ge 0$ for all $x \in \mathcal{H}$
- $|K(x,y)|^2 \leq K(x,x)K(y,y)$ for all $x,y \in \mathcal{H}$

Proof: For arbitrary finite set of points $\{y_1, \dots, y_n\} \subseteq X$ and any complex numbers $\epsilon_1, \dots, \epsilon_n$, we have

$$0 \leq \|\sum_{i=1}^{n} \epsilon_{i} K_{y_{i}}\|^{2} = \langle \sum_{i=1}^{n} \epsilon_{i} K_{y_{i}}, \sum_{j=1}^{n} \epsilon_{j} K_{y_{j}} \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i} \overline{\epsilon_{j}} \langle K_{y_{i}}, K_{y_{j}} \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{i} \overline{\epsilon_{j}} K(y_{i}, y_{j})$$

Hence

$$\sum_{i,j=1}^n \overline{\epsilon}_j \epsilon_i \mathcal{K}(y_j, y_i) \ge 0.$$

i.e. *K* is positive definite.

Properties of RKHS

Properties of RKHS

Given a reproducing kernel Hilbert space \mathcal{H} and its kernel K(y, x) on X, then for all $x, y \in X$ we have

(i) $K(y, y) \ge 0$.

(ii)
$$K(y,x) = \overline{K(x,y)}$$
.

(iii) $|K(y,x)|^2 \leq K(y,y)K(x,x)$, (Schwarz Inequality).

(iv) Let $x_0 \in X$. Then the following statements are equivalent:

(a) $K(x_0, x_0) = 0$. (b) $K(y, x_0) = 0$ for all $y \in X$. (c) $f(x_0) = 0$ for all $f \in \mathcal{H}$.

Proof :

(i) and (ii) can be easily seen from the reproducing and norm properties (27) and (28), respectively.

For (iii) we use the Schwarz Inequality in \mathcal{H} . It follows that

$$\begin{split} |\mathcal{K}(y,x)|^2 &= |\langle \mathcal{K}_y, \mathcal{K}_x \rangle|^2 \\ &\leq ||\mathcal{K}_y|| ||\mathcal{K}_x|| ||\mathcal{K}_y|| ||\mathcal{K}_x|| \\ &= ||\mathcal{K}_y||^2 ||\mathcal{K}_x||^2 \\ &= \langle \mathcal{K}_y, \mathcal{K}_y \rangle \langle \mathcal{K}_x, \mathcal{K}_x \rangle \\ &= \mathcal{K}(y,y) \mathcal{K}(x,x) \end{split}$$

As for (iv), it follows by (iii) that $K(x_0, x_0) = 0$ is equivalent with $K(y, x_0) = 0$ for all $y \in X$. Further, by the reproducing property we have that $K(y, x_0) = 0$ for all $y \in X$ if and only if $f(x_0) = 0$, for all f.

Notation

The Hilbert space with reproducing kernel K is denoted by

 $\mathcal{H}_{\mathcal{K}}(X).$

Moreover, the norm is denoted by

 $\|\cdot\|_{\mathcal{K}} = \|\cdot\|_{\mathcal{H}_{\mathcal{K}}}$

and the inner product is denoted by

 $\langle \cdot, \cdot \rangle_{\mathcal{K}} = \langle \cdot, \cdot \rangle_{\mathcal{H}_{\mathcal{K}}}.$

Theorem

Every sequence of functions $(f_n)_{n\geq 1}$ that converges strongly to a function f in $\mathcal{H}_{\mathcal{K}}(X)$, converges also in the pointwise sense, i.e., for any point $x \in X$,

$$\lim_{n\to\infty}f_n(x)=f(x).$$

In addition, this convergence is uniform on every subset of X on which $x \mapsto K(x, x)$ is bounded.

Proof: For $x \in X$, by the reproducing property and the Schwarz Inequality,

$$\begin{split} |f(x) - f_n(x)| &= |\langle f, K_x \rangle - \langle f_n, K_x \rangle| \\ &= |\langle f - f_n, K_x \rangle| \\ &\leq \|f - f_n\| \cdot \|K_x\| \\ &= \|f - f_n\| K(x, x)^{1/2} \end{split}$$

Hence $\lim f_n(x) = f(x)$, for any point $x \in X$. Moreover, it is clear from the above inequality that this convergence is uniform on every subset of X on which $x \mapsto K(x, x)$ is bounded.

Operations with RKHSs

Theorem

Let $K^{(0)}$ be the restriction of the positive definite kernel K to a nonempty subset X_0 of X and let $\mathcal{H}_{K^{(0)}}(X)$ and $\mathcal{H}_K(X)$ be the RKHS corresponding to $K^{(0)}$ and K, respectively. Then

$$\mathcal{H}_{K^{(0)}}(X_0) = \{ f | X_0 : f \in \mathcal{H}_K(X) \}$$
(30)

and

$$\|h\|_{K^{(0)}} = \min\{\|f\|_{K} : f|_{X_{0}} = h\}$$
 for all $h \in \mathcal{H}_{K^{(0)}}(X_{0}).$ (31)

Remark

If $\mathcal{K}^{(1)}(y,x)$ and $\mathcal{K}^{(2)}(y,x)$ are two positive definite kernels, then

$$K(y,x) = K^{(1)}(y,x) + K^{(2)}(y,x)$$

is also a positive definite kernel.

Operations with RKHSs

Theorem

The tensor product Hilbert space

 $\mathcal{H}_{K^{(1)}}(X)\otimes \mathcal{H}_{K^{(2)}}(X)$

is a RKHS on $X \times X$.

Take $g \in \mathcal{H}_{\mathcal{K}^{(1)}}(X)$, $h \in \mathcal{H}_{\mathcal{K}^{(2)}}(X)$ and $x, x' \in X$. It follows

$$(g\otimes h)(x,x')=g(x)h(x')=\langle g, \mathcal{K}^{(1)}_x
angle\langle h, \mathcal{K}^{(2)}_{x'}
angle=\langle g\otimes h, \mathcal{K}^{(1)}_x\otimes \mathcal{K}^{(2)}_{x'}
angle$$

which shows that the tensor product Hilbert space $\mathcal{H}_{K^{(1)}}(X) \otimes \mathcal{H}_{K^{(2)}}(X)$ is a RKHS on $X \times X$. Consider the map $\varphi : X \longrightarrow \mathcal{H}_{K^{(1)}}(X) \otimes \mathcal{H}_{K^{(2)}}(X)$ defined by $x \mapsto K_x^{(1)} \otimes K_x^{(2)}$. Then

$$\begin{split} \mathcal{K}(y,x) &= \langle \varphi_x, \varphi_y \rangle = \langle \mathcal{K}_x^{(1)} \otimes \mathcal{K}_x^{(2)}, \mathcal{K}_y^{(1)} \otimes \mathcal{K}_y^{(2)} \rangle = \langle \mathcal{K}_x^{(1)}, \mathcal{K}_y^{(1)} \rangle \cdot \langle \mathcal{K}_x^{(2)}, \mathcal{K}_y^{(2)} \rangle \\ &= \mathcal{K}^{(1)}(y,x) \cdot \mathcal{K}^{(2)}(y,x) \ \text{ for } \ x,y \in X. \end{split}$$

Hence the pointwise product of two positive definite kernels is again a positive definite kernel.

Bergman Space and Its Kernel

Definition (Bergman Space)

The space of all analytic functions f on Ω for which

$$\iint_{\Omega} |f(z)|^2 dx dy < \infty, \quad (z = x + iy)$$

is satisfied, is called the *Bergman space* on Ω and denoted by $A^2(\Omega)$.

Definition (Bergman Kernel)

 $A^{2}(\Omega)$ is a *RKHS* with respect to the inner product

$$\langle f,g \rangle \equiv \langle f,g \rangle_{\Omega} := \iint_{\Omega} f(z) \overline{g(z)} dx dy$$

and its kernel is called the *Bergman kernel* on Ω and denoted by $B^{(\Omega)}(w, z)$.

Bergman Kernel

Bergman Kernel For the Unit Disc

The Bergman kernel for the open unit disc \mathbb{D} is given by

$$B^{(\mathbb{D})}(w,z) = \frac{1}{\pi} \frac{1}{(1-w\overline{z})^2} \quad \text{for } w, z \in \mathbb{D}.$$
 (32)

Bergman Kernel of a Simply Connected Domain

The Bergman kernel of a simply connected domain $\Omega(\neq \mathbb{C})$ is given by

$$B^{(\Omega)}(w,z) = \frac{1}{\pi} \frac{\varphi'(w)\overline{\varphi'(z)}}{\left(1 - \varphi(w)\overline{\varphi(z)}\right)^2} \quad \text{for } w, z \in \Omega,$$
(33)

where φ is any conformal mapping function from Ω onto \mathbb{D} .

References

- T. ANDO, *Reproducing Kernel Spaces and Quadratic Inequalities*, Lecture Notes, Hokkaido University, Research Institute of Applied Electricity, Division of Applied Mathematics, Sapporo, Japan, 1987.
- N. ARONSZAJN, *Theory of reproducing kernels*, TAMS Vol. 68, No.3, 1950, pp. 337-404.
- J.B. CONWAY, *A Course in Functional Analysis*, Springer Verlag, Berlin -Heidelberg - New York, 1989.
 - P.L. DUREN, A. SCHUSTER, *Bergman Spaces*, Amer. Math. Soc., Providence R.I. 2004.
 - P. KOOSIS, *Introduction to H_p Spaces*, Cambridge Mathematical Press, Cambridge, 1970.
- B. OKUTMUSTUR,, A Survey on Hilbert Spaces and Reproducing Kernels in Functional Calculus, London: Intech Open, 2020, pp 61-77

S. SAITOH, Y. SAWANO, *Theory of Reproducing Kernels and Applications* Springer, 2016.