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Introduction - Plan presentation

Kernel Methods: applications, promises and open issues. . .
Predictive machine with uncertainty quantification.

Partial differential equations (PDE) - mathematical physics.

Statistic algorithms, Generative methods, Reinforcement Learning.

Feed-back on kernel methods.

Some related keywords
Supervised learning, Clustering methods. Large dataset.

Mesh-free methods, Particle methods.

Encoders / Decoders, Actor Critic, Q-Learning.

RKHS stands for Reproducing Kernel Hilbert Space.
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Predictive machine and uncertainty quantification
Definition : a predictive (or learning) machine is an algorithm (m = neural nets,
trees, . . . , kernels) defining a function of z ∈ RD

z 7→ fm(z , θ) ∈ RDf is called the prediction

Fitting a predictive machine
to a training set (X , f (X )) ∈ RNX ,D+Df corresponds to solving for some norm ∥ · ∥

inf
θ

∥fm(·, θ) − f (·)∥

error quantification corresponds to find an error bound of kind ∥fm(·, θ) − f (·)∥.
A classical example: ∥fm(Z , θ) − f (Z )∥ℓ2 , Z ∈ RNZ ,D , f (Z ) ∈ RNZ ,Df are reference
(ground truth) values (7→ cross validation).

Figure 1: left training set (X,f(X)), right test set (Z,f(Z)).
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Reminder on kernels

A kernel is a symmetrical function k(x , y)
Translation invariant kernels k(x, y) = f (x − y) : eg Gaussian k(x, y) = exp(−|x − y|2).

Polynomial features map kernels k(x, y) =< f (x), f (y) >α.

Kernel engineering k(x, y) = (k1 + k2)(x, y), k(x, y) = (k1 × k2)(x, y), k(x, y) = (k1 ∗ k2)(x, y).

Vector or functional kernels |(k1, k2, · · · )(x, y)|2 (vector), k∗(x, y) := |x ∗ y|α (convolutional), k̂(x, y) = k(x̂, ŷ)
(Fourier type).

Gram matrix k(X , Y ) :=
(

k(x i , y j)
)

i,j
∈ RNX ,NY .

Definite positive kernels: k(X , X ) is s.d.p if x i ̸= x j , i ̸= j .

A kernel always needs a normalization map k(x , y) ≡ k(S(x), S(y))

Kernel distances : d(x , y) = k(x , x) + k(y , y) − 2k(x , y), d(X , Y ) = . . .
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Predictive kernel machine
A kernel predictive machine is defined as fk(z , θ) := k(z , Y )θ, θ ∈ RNY ,Df

Fitting a kernel predictive machine to a training set X , F (X ) :

fk(z , θ) := k(z , Y )θ, θ :=
(

K (X , Y ) + ϵR(X , Y )
)−1

f (X )

Kernel quantification error

∥fk(Z , θ) − f (Z )∥ℓ2 ≤
(

d(Z , Y ) + d(X , Y )
)

∥f ∥Hk

Reproducibility properties

∥fk(X , θ) − f (X )∥ℓ2 ≤ d(X , X )∥f ∥Hk = 0, (Y = X , ϵ = 0)

Kernel differential operators

∇fk(z , θ) = ∇zk(z , Y )θ
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Issues with predictive kernel machines
For extrapolation, the parameters set θ is fit according to θ := K (X , X )−1f (X ).
algorithmic complexity and memory storage : N2

X (Gram matrix) plus N3
X

(Invertion) operations: can’t handle large dataset.

Clustering methods

∥fk(X , θ) − f (X )∥ℓ2 ≤ d(X , Y )∥f ∥Hk , Y ∗ = arg inf
Y

d(X , Y )

However the problem infY d(X , Y ) is still computationally intensive. Heuristic :
k-means type algorithm with kernel distances can be quite efficients.

Low-rank approximations - Nystrom methods

Y ∗ = arg inf
Y ⊂X

∥Id − k(X , Y )k(Y , Y )−1k(Y , X )∥

Still require N2
X NY + N3

Y operations, but the following ersatz is very efficient

Y ∗ = arg inf
Y ⊂X

∥f (X ) − K (X , Y )K (Y , Y )−1f (Y )∥
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Kernel methods for Partial Differential Equations

Kernel methods are very handy for PDE:

Kernel operators. Kernels allows to define easily complex differential operators and to manipulate them.

Meshless methods. No need to handle a mesh, making the code easier.

Particle methods. The mesh can move, redefining its differential operators. Very efficient for Lagrangian methods.

Boundary conditions. Kernel interpolation operators allows to take into account easily complex boundary conditions.

Convergence analysis. Provide tools to analyze the convergence and complexity.

However classical schemes (finite differences, finite elements) are more performing
for low dimensions (D = 1, 2). Usage of kernel methods

PDE in high dimensions: anytime.

PDE in low dimensions: for fast prototyping, or parametric PDEs (solutions depending on extra parameters), or
unstructured meshes.

To learn PDEs : learn the solution of a PDE ( un+1 = fk (θn, un)) to fasten computations of classical schemes.
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PDE examples

The SABR process solved in Lagrangian coordinates

dBt = σt (Bt)β dWt , dσt = ασt dZt

Video: At each time, the scheme compute the best Monte-Carlo samples
X∗(t) := infX∈RN,D |EBt [f ] − 1

N
∑N

n=1 f (xn)|. Alternative to low-discrepancy
sequences.

Navier-Stokes equations in Lagrangian coordinates
Video: A viscous fluid running into a pipe (null normal component velocity
boundary conditions).
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Kernels encoders and decoders
Consider X , Y two set of points and consider the predictive machine

z 7→ k(z , X )θ, θ := k(X , X )−1Y

defining a mapping from RDX to RDY . Can we invert it ?

Homogenous case (DX = DY = D): find a permutation σ

σ∗ := arg inf
σ

∑
n

d(xn, Y [σn]), θ∗ := k(X , X )−1Y [σ∗]

Then z 7→ k(z , X )θ∗ is invertible (optimal transport)

Inhomogenous case (DX ̸= DY ) : find a permutation σ such that

σ∗ := arg inf
σ

|
∑

n
∇kY [σn])|2, θ∗ := k(X , X )−1Y [σ∗]

Generalized travelling salesman problem. Drawback : computationally
intensive.
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Applications: generative methods
Let X,Y be any two probability measures, taking values into X ⊂ RDX ,Y ⊂ RDY .

Figure 2: Generating high res faces using low res cats

L : Y 7→ X is the encoder. Example: faces res. DY = 120000.

X is the latent space. example: cats res. DX = 100.

The inverse map L−1 : X 7→ Y is the decoder.

The projection operator z 7→ (L−1 ◦ L)(z) is called a reconstruction

Alternative approaches: GAN, WGAN, . . .
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Applications of kernel generative methods (KGM)

The sampler function : reproduce a random variable
Generation of a variate, that is statistically coherent with historical observations.

Figure 3: Generated (right) images of CelebA dataset, matched to the original
CelebA dataset (left).
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Other applications of KGM.
Conditioned random variables
Consider X ∈ RN,DX ,Y ∈ RN,DY two variates of dependent random variables.
Consider Z =

(
X, Y

)
∈ RN,DX +DY the joint random variable. We can

approximate the following conditioned distribution:

YX := E
(
Y|x

)
, x ∈ supp(X)

Figure 4: Removing hat and glasses of CelebA images.
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Time series prediction with generative methods.
Real market data, retrieved from January 1, 2016 to December 31, 2021, for
three assets: Google, Apple and Amazon.

Figure 5: charts for Apple Amazon Google

Format : NX is the number of observed paths. Here NX = 1. DX is the number
of underlyings. Here DX = 3. TX is the number of times buckets. Here TX = 506
(2Y).

X =
(

xn,k
d

)n=1...NX ,k=1,...,TX

d=1...D
∈ RNX ,DX ,TX .
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Agnostic models.
We call a free model, or agnostic model the following framework for time series

F
(

X
)

= ε

ε ∈ RNϵ,Dϵ,Tϵ is a white, or conditioned noise.
F : RNX ,DX ,TX 7→ RNϵ,Dϵ,Tϵ is a invertible continuous map.
Incentive: X = F −1

(
ε
)

is one iid path of the model (reproducibility).
Path Generation: easy Monte-Carlo sampling with generative methods
(Z = F −1

(
η
)

).

All stochastic processes can be re-interpreted as agnostic models. For
instance, the multi-time steps model ARMA(p,q)

Extending models with conditioning F (X ) = E(ϵ|Y ) .
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Promises and open issues.

Versatile, universal approach to mathematical physic.
Very performing also for statistic and machine learning, specially in
the small to medium size dataset regime.
Interesting for industrial purposes. Reproducibility and error bounds
are important for audit purposes. Fast learning is paramount to
reduce energy consumption.

Kernel methods should be mainframe either for industry and research. But:

Still migrating from research (large dataset).
No standard library dedicated to kernel. Kernel software is very
fragmented, no consensual approach (scikit-learn, tensorflow, keops,
pytorch, codpy, ...).
Few available resources to develop kernel methods.
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Some references

CodPy: a Python library for numerics, machine learning, and statistics
: https://arxiv.org/pdf/2402.07084.
Some names to complete a book shelves with kernel methods :
Thomas-Agnan, Berlinet, Smolla, Scholkopf, Greton, Fasshauer, ...
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