
Functional Bilevel Optimization: Theory and Algorithms
RKHS Seminars (METU)

Michael Arbel

INRIA, Grenoble Rhône-Alpes, France

February 13, 2025



Outline

Motivation: Objectives and challenges in bilevel optimization

Part I: Functional bilevel optimization

Part II: Towards a learning theory for Kernel Bilevel optimization



Outline

Motivation: Objectives and challenges in bilevel optimization

Part I: Functional bilevel optimization

Part II: Towards a learning theory for Kernel Bilevel optimization



Bilevel Optimization (BO) in machine learning

min
ω∈Ω

L (ω) := Lout(ω,θ⋆ω)

s.t. θ⋆ω ∈ argmin
θ∈Θ

Lin(ω,θ)

Upper-level (e.g., Validation loss)

Lower-level (e.g., Training loss)

Goal: Minimizing L (ω) using (approximate) gradient methods.
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Lin(ω,θ)

Upper-level (e.g., Validation loss)

Lower-level (e.g., Training loss)

Goal: Minimizing L (ω) using (approximate) gradient methods.

Many machine learning applications:
Ï Hyper-parameter Optimization

[Franceschi et al., 2018]
Ï Meta-learning [Rajeswaran et al., 2019]
Ï Model-based Reinforcement learning

[Nikishin et al., 2022]
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General Bilevel problems are (very) hard

Harder than NP-Hard
General bilevel problems are provably harder than general optimization [Bolte et al., 2024].

Any Hope?
Specialized methods can find solutions efficiently when:
Ï The lower-level problem is strongly convex,
Ï and has finite-dimensional variables.

To tame the complexity of bilevel problems, we must exploit every structural advantage!



Strongly-convex lower-level with finite dimensional lower variables
A manageable, but restrictive, setting

min
ω∈Rd

L (ω) := Lout(ω,θ⋆ω)

s.t. θ⋆ω = argmin
θ∈Rp

Lin(ω,θ)

∇L (ω) = ∂1Lout(ω,θ⋆ω)+∇θ⋆ω∂2Lout(ω,θ⋆ω)

∇θ⋆ω

p×p matrix︷ ︸︸ ︷
∂2

2,2Lin(ω,θ⋆ω) =−
d×p matrix︷ ︸︸ ︷

∂2
1,2Lin(ω,θ⋆ω)

Chain rule

IFT

Key ingredient: Implicit differentiation
Ï Strong convexity guarantees existence

and uniqueness of the inner-level θ⋆ω.
Ï Implicit function theorem (IFT):

∇θ⋆ω defined by a linear system.

Efficient algorithms + Theoretical guarantees

X Scalable algorithms (AID, ITD, ...)
Lorraine:2020,Franceschi:2017a

X Near optimal convergence guarantees in
various settings (deterministic/stochastic):
Ghadimi:2018,Ji:2021a,Arbel:2021a,
Ghadimi:2018,Ji:2021a,Arbel:2021a,
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Key ingredient: Implicit differentiation
Ï Strong convexity guarantees existence

and uniqueness of the inner-level θ⋆ω.
Ï Implicit function theorem (IFT):

∇θ⋆ω defined by a linear system.

Efficient algorithms + Theoretical guarantees

Ï Scalable algorithms (AID, ITD, ...)
[Lorraine et al., 2020, Franceschi et al., 2017]

Ï Near optimal convergence guarantees in
various settings (deterministic/stochastic):
[Ghadimi and Wang, 2018, Ji et al., 2021,
Arbel and Mairal, 2021, Dagréou et al., 2022].



Strongly-convex lower-level with finite dimensional lower variables
A manageable, but restrictive, setting

min
ω∈Rd

L (ω) := Lout(ω,θ⋆ω)

s.t. θ⋆ω = argmin
θ∈Rp

Lin(ω,θ)

Inner variable θ often represents the parame-
ters of some predictive model fθ, ex:

Lin(ω,θ) = E
[
∥y− fθ(x)∥2 + eω∥fθ(x)∥2

]

Ï Strong convexity of θ 7→ Lin(ω,θ) restricts to linear model, i.e.:

fθ(x) = θ⊤ψ(x)

Ï Sophisticated models fθ, (e.g. neural networks) =⇒ θ 7→ Lin(ω,θ) is non-convex.

Should we go non-convex?



Strongly
Non

-convex lower-level with finite dimensional lower variables

min
ω∈Rd

L (ω) := Lout(ω,θ⋆ω)

s.t. θ⋆ω ∈ argmin
θ∈Rp

Lin(ω,θ)

Inner variable θ often represents the parame-
ters of some predictive model hθ, ex:

Lin(ω,θ) = E
[
∥y− fθ(x)∥2 + eω∥fθ(x)∥2

]

Ï More sophisticated models fθ, e.g. neural network =⇒ θ 7→ Lin(ω,θ) is non-convex.
Ï The bad news: IFT not applicable for general non-convex losses: Non-uniqueness of θ⋆ω.
Ï The worse news: The whole bilevel problem is ambiguous for non-convex losses:

As many bilevel problems as choices of solution θ⋆ω!



Strongly
Non

-convex lower-level with finite dimensional lower variables

Towards non-convex implicit differentiation ([Arbel and Mairal, 2022] @ NeurIPS 2022)
Ï Selection map φ(ω,θ0) as a replacement for ambiguous solution θ⋆ω.
Ï Can be defined implicitly by an algorithmic procedure (Implicit bias),

(e.g.: limit of gradient descent on θ 7→ Lin(ω,θ) starting from initial location θ0.)
Ï Implicit differentiation formula for ∇L (ω) still holds for suitable class of functions:

Parametric Morse-Bott functions

Justifies using standard BO algorithms even when inner losses is non-convex!



Strongly
Non

-convex lower-level with finite dimensional lower variables

Towards non-convex implicit differentiation ([Arbel and Mairal, 2022] @ NeurIPS 2022)
Ï Selection map φ(ω,θ0) as a replacement for ambiguous solution θ⋆ω.
Ï Can be defined implicitly by an algorithmic procedure (Implicit bias),

(e.g.: limit of gradient descent on θ 7→ Lin(ω,θ) starting from initial location θ0.)
Ï Implicit differentiation formula for ∇L (ω) still holds for suitable class of functions:

Parametric Morse-Bott functions

Justifies using standard BO algorithms even when inner losses is non-convex!

Limitations
× Can still get instabilities in practice: ill-conditioned linear systems.
× Convergence analysis seems currently beyond reach.



Strongly-convex lower-level with infinite dimensional lower variables

Stay strongly-convex!
Ï Strong convexity is important for stability (both in theory and in practice).
Ï Allows precise control for the inner-level solution.

Go infinite dimensional!
Ï Increased expressivity: Beyond linear models.
Ï Opens way for theoretical analysis
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Functional bilevel optimization (NeurIPS 2024)



Abstract functional bilevel optimization

A Hidden functional structure in some BO

min
ω∈Rd

L (ω) := Lout(ω,θ⋆ω)

s.t. θ⋆ω ∈ argmin
θ∈Rp

Lin(ω,θ)

Variable θ indexes a predictive model fθ, ex:

Lout(ω,θ) = E
[
∥y− fθ(x)∥2

]
Lin(ω,θ) = E

[
∥y− fθ(x)∥2 + eω∥fθ(x)∥2

]
Ï Only model predictions fθ(x) actually matter to both losses, not the parameters!
Ï Could choose a different parameterization without changing predictions.

Why not using fθ as the inner variable instead of θ?



Abstract functional bilevel optimization

Leveraging the functional structure in BO

min
ω∈Rd

L (ω) := Lout(ω,h⋆ω)

s.t. h⋆ω ∈ argmin
h∈H

Lin(ω,h)

Inner variable h is in a Hilbert space H , ex:

Lout(ω,h) = E
[
∥y−h(x)∥2

]
Lin(ω,h) = E

[
∥y−h(x)∥2 + eω∥h(x)∥2

]
Ï More flexible predictions: Inner variable is a function in a rich Hilbert space H .
Ï Strong convexity: easier to obtain in function spaces:

Many ML objectives are (strongly) convex there (e.g.: MSE).
Ï Function approximation: Can approximate h⋆ω using a model fθ with parameters θ).
Ï Implicit differentiation w.r.t. ω performed directly on the function h⋆ω

(not on parameters θ of approximating model fθ!)



Implicit differentiation in an abstract Hilbert space H

Theorem (informal): Assume that:
Ï There exists µ>0 such that h 7→ Lin(ω′,h) is µ-strongly convex for any ω ∈Rd.
Ï Lin and Lout have finite values and are Fréchet (strongly) differentiable.
Ï ∂2Lin is Hadamard differentiable (not necessarily Fréchet differentiable) .

Then, the total objective L is differentiable with gradient given by:
∇L (ω) = ∂1Lout(ω,h⋆ω)+∇h⋆ω∂2Lout(ω,h⋆ω),

where the Jacobian ∇h⋆ω is the unique solution to the infinite dimensional system:

∇h⋆ω

Operator in H︷ ︸︸ ︷
∂2

2,2Lin(ω,h⋆ω) =−
Operator from H to Rd︷ ︸︸ ︷
∂2

1,2Lin(ω,hω⋆)
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Then, the total objective L is differentiable with gradient given by:
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Ï Standard versions of IFT require ∂2Lin to be Fréchet differentiable → Too restrictive
For L2 spaces, [Nemirovski and Semenov, 1973] show it only holds quadratic functions.

Ï Hadamard differentiability allows a broader class of functions!
(also used in statistics for the functional delta-method [van der Vaart and Wellner, 1996].)



Implicit differentiation in an abstract Hilbert space H

Theorem (informal): Assume that:
Ï There exists µ>0 such that h 7→ Lin(ω′,h) is µ-strongly convex for any ω ∈Rd.
Ï Lin and Lout have finite values and are Fréchet (strongly) differentiable.
Ï ∂2Lin is Hadamard differentiable (not necessarily Fréchet differentiable) .

Then, the total objective L is differentiable with gradient given by:
∇L (ω) = ∂1Lout(ω,h⋆ω)+∇h⋆ω∂2Lout(ω,h⋆ω),

where the Jacobian ∇h⋆ω is the unique solution to the infinite dimensional system:

∇h⋆ω

Operator in H︷ ︸︸ ︷
∂2

2,2Lin(ω,h⋆ω) =−
Operator from H to Rd︷ ︸︸ ︷
∂2

1,2Lin(ω,hω⋆)

✓ Expression of the gradient is independent of the way h⋆ω is approximated.
× Abstract expression, unclear how to use it in practice.

Need to consider more concrete spaces!



Implicit differentiation in L2 spaces and adjoint sensitivity method

A notable setting in ML (e.g.: Model-based RL, Instrumental Variables regression)
Ï Outer and inner losses are expectations of point-wise losses under data distribution P:

Lout(ω,h) := EP
[
ℓout(ω,h(x),y)

]
, Lin(ω,h) := EP

[
ℓin(ω,h(x),y)

]
Ï H = L2(P): The space of functions of x that are square integrable w.r.t. P.

Proposition (informal): If v 7→ ℓin(ω,v,y) is strongly convex + mild assumptions:

∇L (ω) = EQ
[
∂1ℓout

(
ω,h⋆ω(x),y

)+∂1,2ℓin
(
ω,h⋆ω(x),y

)
a⋆ω(x)

]
,

where the adjoint function a⋆ω is the unique minimizer in L2(P) of a 7→ Ladj(ω,h⋆ω,a):

Ladj(ω,h,a) := EP
[

1
2 a(x)⊤∂2

2,2ℓin
(
ω,h(x),y

)
a(x)+a(x)⊤∂2ℓout

(
ω,h(x),y

)]



Functional Bilevel Optmization (FuncBO)

General recipe

1. Approximate the search space for prediction and adjoint functions by flexible parametric
families (fθ)θ∈Rp and (gξ)ξ∈Rq (e.g. neural networks).

2. Optimize θ 7→ Lin(ω, fθ) using SGD (or any other algorithm) → fθ ≈ h⋆ω
3. Optimize ξ 7→ Ladj(ω, fθ,gξ) using SGD (or any other optimizer) → gξ ≈ a⋆ω.
4. Approximate the gradient using a batch B of samples:

∇̂L (ω) := 1
|B|

∑
(x,y)∈B

∂1ℓout
(
ω, fθ(x),y

)+∂1,2ℓin
(
ω, fθ(x),y

)
gξ(x),



Functional Bilevel Optmization (FuncBO)

General recipe

1. Approximate the search space for prediction and adjoint functions by flexible parametric
families (fθ)θ∈Rp and (gξ)ξ∈Rq (e.g. neural networks).

2. Optimize θ 7→ Lin(ω, fθ) using SGD (or any other algorithm) → fθ ≈ h⋆ω
3. Optimize ξ 7→ Ladj(ω, fθ,gξ) using SGD (or any other optimizer) → gξ ≈ a⋆ω.
4. Approximate the gradient using a batch B of samples:

∇̂L (ω) := 1
|B|

∑
(x,y)∈B

∂1ℓout
(
ω, fθ(x),y

)+∂1,2ℓin
(
ω, fθ(x),y

)
gξ(x),

Advantages
Ï Memory and time savings: No need for higher-order derivatives of fθ and gξ.
Ï Stability: Strongly-convex adjoint objective in function space: well-defined solution.



Applications to Instrumental Variables regression

Results on synthetic IV task [Xu et al., 2020]

Ï IV solves a nested regression:
Functional bilevel problem!

Ï Regressor functions are be deep
networks: (DFIV [Xu et al., 2020])

Ï Large improvement over classical bilevel optimization algorithms (AID/ITD)
Ï Competitive with problem specific methods (DFIV)!



Applications to Model-based RL (inspired by [Nikishin et al., 2022])

Miss-specified model Well-specified model

Same method works well in both settings!



Convergence/generalization guarantees for FuncBO

Proposition (informal): Assume that L is L-smooth and admits a finite lower bound
F⋆. Consider an update rule ωt+1 =ωt −η∇̂L (ωt) with suitable step-size η. Under
mild smoothness assumptions ℓin and ℓout:

min
0≤i≤t

E
[∥∥∇L (ωi)

∥∥2
]
≤ 4

(
F (ω0)−F⋆

)
η(t+1)

+2ηLσ2
eff + (c1ϵin +c2ϵadj),

where c1, c2,σ2
eff are positive constants, and ϵin,ϵadj are sub-optimality errors that

result from the inner and adjoint optimization procedures.



Convergence/generalization guarantees for FuncBO

Proposition (informal): Assume that L is L-smooth and admits a finite lower bound
F⋆. Consider an update rule ωt+1 =ωt −η∇̂L (ωt) with suitable step-size η. Under
mild smoothness assumptions ℓin and ℓout:

min
0≤i≤t

E
[∥∥∇L (ωi)

∥∥2
]
≤ 4

(
F (ω0)−F⋆

)
η(t+1)

+2ηLσ2
eff + (c1ϵin +c2ϵadj),

where c1, c2,σ2
eff are positive constants, and ϵin,ϵadj are sub-optimality errors that

result from the inner and adjoint optimization procedures.

Ï Sub-optimality errors are hard to control for neural networks:
depends on optimization, approximation power, complexity of the class.

Ï Rates does not quantify the effect of sample size: (all hidden in the sub-optimality error).

Hard to get quantitative convergence results in L2-spaces, what about other spaces?
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Kernel bilevel optimization: (work in progress)



Reproducing Kernel Hilbert Spaces meet Bilevel optimization

Kernel Bilevel optimization

min
ω∈Rd

L (ω) := Lout(ω,h⋆ω)

s.t. h⋆ω ∈ argmin
h∈H

Lin(ω,h)

Lout(ω,h) = EP
[
ℓout(ω,h(x),y)

]
,

Lin(ω,h) = EP
[
ℓin(ω,h(x),y)

]+ λ

2
∥h∥2

H ,

◦ Same as before, but now H is an RKHS with r.k. K.
◦ Already appeared in the past: [Keerthi et al., 2006, Kunapuli et al., 2008].



Reproducing Kernel Hilbert Spaces meet Bilevel optimization

Kernel Bilevel optimization

min
ω∈Rd

L (ω) := Lout(ω,h⋆ω)

s.t. h⋆ω ∈ argmin
h∈H

Lin(ω,h)

Lout(ω,h) = EP
[
ℓout(ω,h(x),y)

]
,

Lin(ω,h) = EP
[
ℓin(ω,h(x),y)

]+ λ

2
∥h∥2

H ,

◦ Same as before, but now H is an RKHS with r.k. K.
◦ Already appeared in the past: [Keerthi et al., 2006, Kunapuli et al., 2008].

Why an RKHS?
Ï Expressiveness: Some RKHS are dense in L2 spaces [Steinwart and Christmann, 2008].
Ï Algorithms: Easy to derive thanks to the Representer theorem (next slide).
Ï Learning theory: Well-established theoretical framework available for regression (and

similar problems) [Smale et al., 2005, Caponnetto and De Vito, 2007].



Practical algorithms for KBO

From infinite to finite dimensional bilevel optimization
Ï Have n i.i.d. samples (xi,yi).
Ï Replace expectations by

empirical averages.
Ï Representer theorem:

Optimal solution of the form:

ĥω =
n∑

i=1
(θ̂ω)iK(xi, .).

min
ω∈Rd

L̂ (ω) := 1
n

n∑
j=1

ℓout(ω,
(
Kθ̂ω

)
j ,yj)

s.t. θ̂ω = argmin
θ∈Rn

1
n

n∑
i=1

ℓin(ω, (Kθ)i ,yi)+
λ

2
θ⊤Kθ



Practical algorithms for KBO

From infinite to finite dimensional bilevel optimization
Ï Have n i.i.d. samples (xi,yi).
Ï Replace expectations by

empirical averages.
Ï Representer theorem:

Optimal solution of the form:

ĥω =
n∑

i=1
(θ̂ω)iK(xi, .).

min
ω∈Rd

L̂ (ω) := 1
n

n∑
j=1

ℓout(ω,
(
Kθ̂ω

)
j ,yj)

s.t. θ̂ω = argmin
θ∈Rn

1
n

n∑
i=1

ℓin(ω, (Kθ)i ,yi)+
λ

2
θ⊤Kθ

Optimizing L̂ (ω) by implicit differentiation
Ï Can use any standard bilevel optimization

algorithm (AID [Lorraine et al., 2020], ITD
[Franceschi et al., 2018]).

" Dimension of θ increases with sample
size: scalability issues, but not only . . .

∇L̂ (ω) involves the Jacobian:

∇θ̂ω =−Din
1,2

(
KDin

2,2 +nλ1
)−1 ∈Rd×n,

Din
1,2 and Din

2,2: partial derivatives of ℓin.



Learning theory for KBO: Challenges

Limitation of existing generalization results for BO
Existing generalization results require inner-level parameters of fixed dimension
[Bao et al., 2021, Zhang et al., 2024, Arbel and Mairal, 2021]:
Ï θ̂ω and ∇θ̂ω approach population counterparts θ⋆ω ∈Rp and ∇θ⋆ω ∈Rd×p at rate O( 1p

n ).

Ï Generalization results obtained by controlling the error between true and estimated
gradient ∥∇L (ω)−∇L̂ (ω)∥ in terms of ∥θ̂ω−θ⋆ω∥ and ∥∇θ̂ω−∇θ⋆ω∥.
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Challenges with KBO
In KBO, the dimension of the parameter θ̂ω grows with n:
Ï Expression of ∇L̂ (ω) depends explicitly on vectors that grow with sample size, e.g. θ̂ω.
Ï No notion of limiting vector θ⋆ω for θ̂ω exits!
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Limitation of existing generalization results for BO
Existing generalization results require inner-level parameters of fixed dimension
[Bao et al., 2021, Zhang et al., 2024, Arbel and Mairal, 2021]:
Ï θ̂ω and ∇θ̂ω approach population counterparts θ⋆ω ∈Rp and ∇θ⋆ω ∈Rd×p at rate O( 1p

n ).

Ï Generalization results obtained by controlling the error between true and estimated
gradient ∥∇L (ω)−∇L̂ (ω)∥ in terms of ∥θ̂ω−θ⋆ω∥ and ∥∇θ̂ω−∇θ⋆ω∥.

Challenges with KBO
In KBO, the dimension of the parameter θ̂ω grows with n:
Ï Expression of ∇L̂ (ω) depends explicitly on vectors that grow with sample size, e.g. θ̂ω.
Ï No notion of limiting vector θ⋆ω for θ̂ω exits!

Existing convergence/generalization results are not applicable to KBO!

Can we get an expression for ∇L̂ (ω) independent of θ̂ω and ∂ωθ̂ω?



Learning theory for KBO: A functional perspective

Rethinking the expression of ∇L̂ (ω)

L (ω) L̂ (ω)

∇L̂ (ω)

Plug-in estimation

Implicit differentiation Implicit differentiation

Plug-in estimation

1. Discretize the problem using samples,
2. Apply implicit differentiation.

Pros/cons
✓ Convenient in practice: can use classical BO algorithms!
× Hard to use for statistical theory.

What if we followed another path?



Learning theory for KBO: A functional perspective

An alternative (functional) expression for ∇L̂ (ω)

L (ω) L̂ (ω)

∇L (ω) ∇̂L (ω)

Plug-in estimation

Implicit differentiation Implicit differentiation

Plug-in estimation

1. Implicit differentiation in H to express ∇L (ω) in terms of inner solution h⋆ω and adjoint a⋆ω.
2. Discretize expectations in ∇L (ω) + replace h⋆ω and a⋆ω by empirical estimates ĥω and âω.

Pros/cons
× Not very practical expression.
✓ Can control ∥∇L (ω)−∇L̂ (ω)∥ in terms of ∥ĥω−h⋆ω∥H and ∥âω−a⋆ω∥H .

Can use tools from learning theory to control ∥ĥω−h⋆ω∥H and ∥âω−a⋆ω∥H !



Learning theory for KBO: A functional perspective

An alternative (functional) expression for ∇L̂ (ω)

L (ω) L̂ (ω)

∇L (ω) ∇L̂ (ω)

Plug-in estimation

Implicit differentiation Implicit differentiation

Plug-in estimation

Both paths yield the same estimator!



A learning theory for KBO: Main results

Maximal inequalities

Theorem (informal): Fix a compact subset Ω of Rd. Then, under mild assumptions:

E

[
sup
ω∈Ω

∥∥∥∇L (ω)−∇̂L (ω)
∥∥∥]

≲
1p
n

,



A learning theory for KBO: Main results

Maximal inequalities

Theorem (informal): Fix a compact subset Ω of Rd. Then, under mild assumptions:

E

[
sup
ω∈Ω

∥∥∥∇L (ω)−∇̂L (ω)
∥∥∥]

≲
1p
n

,

Generalization error of BO algorithms

Corollary (informal): Consider the iterates ωt+1 = ωt −η∇L̂ (ωt). Then, assuming
ℓout is coercive in its second argument, it follows that:

E
[

min
i=0,...,t

∥∥∇L (ωi)
∥∥]

≲
1p
n
+ 1p

t+1
.



A learning theory for KBO: Main results

Maximal inequalities

Theorem (informal): Fix a compact subset Ω of Rd. Then, under mild assumptions:

E

[
sup
ω∈Ω

∥∥∥∇L (ω)−∇̂L (ω)
∥∥∥]

≲
1p
n

,

Proof sketch and challenges
1 Upper-bound ∥∇L (ω)−∇L̂ (ω)∥ by terms:∥∥∥∥∥1

n

n∑
i=1

τω(xi,yi)−EP[τω(xi,yi)]

∥∥∥∥∥ ,

where τω can be real-valued functions or
RKHS-valued ones ( e.g. values in H ).
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Maximal inequalities

Theorem (informal): Fix a compact subset Ω of Rd. Then, under mild assumptions:

E

[
sup
ω∈Ω

∥∥∥∇L (ω)−∇̂L (ω)
∥∥∥]

≲
1p
n

,

Proof sketch and challenges
1 Upper-bound ∥∇L (ω)−∇L̂ (ω)∥ by terms:∥∥∥∥∥1

n

n∑
i=1

τω(xi,yi)−EP[τω(xi,yi)]

∥∥∥∥∥ ,

where τω can be real-valued functions or
RKHS-valued ones ( e.g. values in H ).

2 Real-valued τω: Maximal inequalities for
empirical processes [Van der Vaart, 2000].

3 RKHS-valued τω: Maximal inequalities
for U-processes [Sherman, 1994].
(Applied to the squared error!)

" Degraded rates when using "simpler"
approaches for RKHS-valued τω.
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Ï Generalization theory beyond RKHS: deep networks?



Summary

A new framework for bilevel optimization in ML
Ï Compatible with flexible function approximation tools (neural networks, RKHS).
Ï Practical algorithms like FuncBO
Ï Opens way for generalization theory

Limitations and future work
Ï Extension to other spaces of functions: ex: Sobolev spaces: learning PDEs
Ï Generalization theory beyond RKHS: deep networks?

Thank you!
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