Finite-Dimensional RKHS

Ömür Uğur

Institute of Applied Mathematics
Middle East Technical University
RKHS (Learning) Seminars, March 2024

Table of Contents

(1) Introduction
(2) Definitions - Recall
(3) Kernel of an Inner Product Subspaces

- Definitions of the Kernel \& Examples
- Remarks on the Definitions
- Equivalence of the Definitions - Lemmata
(4) Extrinsic Geometry and Interpolation

Continue with ...

(1) Introduction

(2) Definitions - Recall
(3) Kernel of an Inner Product Subspaces

- Definitions of the Kernel \& Examples
- Remarks on the Definitions
- Equivalence of the Definitions - Lemmata

4. Extrinsic Geometry and Interpolation

Motivating Example

Consider a line passing through the origin in \mathbb{R}^{2}, with the parametrisation:

$$
\ell(\theta)=\{(t \cos \theta, t \sin \theta): t \in \mathbb{R}\} \subset \mathbb{R}^{2}
$$

It can easily be shown that

$$
f(\theta)=(r(\theta) \cos \theta, r(\theta) \sin \theta)
$$

where $r(\theta)=p_{1} \cos \theta+p_{2} \sin \theta$, is the projection of an arbitrary point $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}$ onto the one-dimensional line (space):

$$
\operatorname{proj}_{\ell(\theta)} p=\frac{p^{\top} v}{\|v\|^{2}} v
$$

where v is (any direction) vector of the line; for instance,

$$
v=(\cos \theta, \sin \theta)
$$

RKHS Way of Representation

RKHS theory uses, instead of one, two vectors to represent the line $\ell(\theta)$. It turns out that the kernel of $\ell(\theta)$, in matrix form, becomes

$$
K(\theta)=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]
$$

Note that the columns,

$$
k_{1}(\theta)=\cos \theta\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], \quad k_{2}(\theta)=\sin \theta\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

of this kernel spans the the line: $\operatorname{span}\left\{k_{1}(\theta), k_{2}(\theta)\right\}=\ell(\theta)=V_{\theta} \subset \mathbb{R}^{2}$, although they are linearly dependent. Interestingly,

$$
f(\theta)=p_{1} k_{1}(\theta)+p_{2} k_{2}(\theta)=K(\theta) p
$$

turns out to be the projection.

Continue with ...

(1) Introduction
(2) Definitions - Recall
(3) Kernel of an Inner Product Subspaces

- Definitions of the Kernel \& Examples
- Remarks on the Definitions
- Equivalence of the Definitions - Lemmata

4. Extrinsic Geometry and Interpolation

Recall — Definitions

Definition (RKHS)

Let Ω be a set. We call a subset \mathcal{H} of the set of all functions $\mathcal{F}(\Omega, \mathbb{F})$ from Ω to \mathbb{F}, that is, $\mathcal{H} \subseteq \mathcal{F}(\Omega, \mathbb{F})$, a reproducing kernel Hilbert space (RKHS) on Ω if,
(1) \mathcal{H} is a vector space of $\mathcal{F}(\Omega, \mathbb{F})$;
(2) \mathcal{H} is endowed with an inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ with respect to which \mathcal{H} is a Hilbert space;
(3) for every $x \in \Omega$, the linear evaluation functional $\mathcal{L}_{x}: \mathcal{H} \rightarrow \mathbb{F}$, $f \mapsto \mathcal{L}_{x} f=f(x)$ is bounded.

Remark. If \mathcal{H} is an RKHS, the by Riesz representation theorem the linear evaluation functional, for each $x \in \Omega$, is given by a unique vector $k_{x} \in \mathcal{H}$, such that for every $f \in \mathcal{H}$,

$$
f(x)=\mathcal{L}_{x} f=\left\langle f, k_{x}\right\rangle_{\mathcal{H}}
$$

Recall — Definitions

Definition (Reproducing Kernel)

The function k_{x} is called the reproducing kernel for the point x. The function $K(x, y): \Omega \times \Omega \rightarrow \mathbb{F}$ defined by

$$
K(x, y)=k_{y}(x)
$$

is called the reproducing kernel for \mathcal{H}.
Remark. Note that

$$
K(x, y)=k_{y}(x)=\left\langle k_{y}, k_{x}\right\rangle_{\mathcal{H}}
$$

so that

$$
K(x, y)=k_{y}(x)=\left\langle k_{y}, k_{x}\right\rangle_{\mathcal{H}}=\overline{\left\langle k_{x}, k_{y}\right\rangle_{\mathcal{H}}}=\overline{K(y, x)} .
$$

Even, further we have for the linear evaluation functional $\mathcal{L}_{x}: \mathcal{H} \rightarrow \mathbb{F}$,

$$
\left\|\mathcal{L}_{x}\right\|_{\mathcal{H} \rightarrow \mathbb{F}}^{2}=\left\|k_{x}\right\|_{\mathcal{H}}^{2}=\left\langle k_{x}, k_{x}\right\rangle_{\mathcal{H}}=K(x, x) .
$$

\mathbb{F}^{n} as an RKHS

For $u, v \in \mathbb{F}^{n}$, we let the usual inner product be $\langle u, v\rangle=v^{\mathrm{H}} u=\sum_{i=1}^{n} \overline{v_{i}} u_{i}$. We can also think an n-tuple, say $x=\left(x_{1}, \ldots, x_{n}\right)$, as a function, say

$$
x: \Omega=\{1, \ldots, n\} \rightarrow \mathbb{F}, \quad x: i \mapsto x(i)=x_{i},
$$

so that with this identification \mathbb{F}^{n} becomes the vector space of all functions on Ω.
For the orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n}$ we define the functions $e_{i}(j)=\delta_{i j}$; thence,

$$
\mathcal{L}_{i} x=x(i)=x_{i}=\left\langle x, e_{i}\right\rangle_{\mathcal{H}} .
$$

Therefore, \mathbb{F}^{n} is an RKHS with the reproducing kernel for the point $i \in \Omega$ is $e_{i} \in \mathcal{H}$, and the reproducing kernel for \mathcal{H} is (the identity matrix)

$$
K(i, j)=\left\langle e_{j}, e_{i}\right\rangle_{\mathcal{H}}=\delta_{i j} .
$$

Continue with ...

(1) Introduction

(2) Definitions - Recall

(3) Kernel of an Inner Product Subspaces

- Definitions of the Kernel \& Examples
- Remarks on the Definitions
- Equivalence of the Definitions - Lemmata

(4) Extrinsic Geometry and Interpolation

Preparations

Definition (Gram Matrix)

For the given $\left\{v_{1}, \ldots, v_{r}\right\} \subset V \subset \mathbb{R}^{n}$ for an inner product (sub-)space, the Gram matrix $G=\left(G_{i j}\right)$ is defined as

$$
G_{i j}=\left\langle v_{i}, v_{j}\right\rangle_{V}=\left\langle v_{j}, v_{i}\right\rangle_{V}
$$

Let $\operatorname{dim} V=r$ and

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}=V
$$

This is perfectly fine to understand the inner product (sub-)space. Even further, we may choose an orthonormal basis $\left\{u_{1}, \ldots, u_{r}\right\}=V$ such that $G=I$.

Preparations

Lemma (Properties of Gram Matrix)

For the set of vectors $\left\{v_{1}, \ldots, v_{r}\right\}$, the Gram matrix is
(1) positive semi-definite;
(2) positive definite (and hence, nonsingular) if $\left\{v_{1}, \ldots, v_{r}\right\}$ is linearly independent.

Proof.

(1) $x^{\top} G x=\sum_{i, j} x_{i} x_{j} G_{i j}=\sum_{i, j} x_{i} x_{j}\left\langle v_{i}, v_{j}\right\rangle=\sum_{i, j}\left\langle x_{i} v_{i}, x_{j} v_{j}\right\rangle=$ $\left\langle\sum_{i, j} x_{i} v_{i}, \sum_{i, j} x_{j} v_{j}\right\rangle=\left\|\sum_{s} x_{s} v_{s}\right\|^{2} \geq 0$.
(2) Using above, $\left\|\sum_{s} x_{s} v_{s}\right\|^{2}=0 \Longleftrightarrow\left\|\sum_{s} x_{s} v_{s}\right\|=0 \Longleftrightarrow x_{s}=0$ since the v_{s} are linearly independent.

Preparations - RKHS

RKHS Way Configuration

Find (rather than the basis) a unique, ordered, spanning set $\left\{k_{1}, \ldots, k_{n}\right\}$ for $V \subset \mathbb{R}^{n}$ by the rule that k_{i} is the unique vector in V satisfying (certain condition such as)

$$
\left\langle v, k_{i}\right\rangle_{V}=\mathcal{L}_{i} v=v(i)=e_{i}^{\top} v=v_{i}, \quad \text { for all } v \in V
$$

Notice the use of the (extrinsic) coordinates in \mathbb{R}^{n} rather than the (intrinsic) coordinates in V for the vector $v \in V$.
Although the term $v_{i}=e_{i}^{\top} v$ looks like an inner product (the standard inner product in \mathbb{R}^{n}), we emphasise that

$$
\mathcal{L}_{i} v=v_{i}=e_{i}^{\top} v=\left\langle v, e_{i}\right\rangle_{\text {standard }}
$$

must be understood as the point-evaluation of the functional, or simply, the evaluation functional.

The Kernel — Definitions (with Matrices)

Let $V \subset \mathbb{R}^{n}$ be an inner product space. The kernel of V is the unique $K=\left[k_{1}, \ldots, k_{n}\right] \in \mathbb{R}^{n \times n}$ determined by any of the following three equivalent definitions.
(1) K is such that each $k_{i} \in V$ and

$$
\left\langle v, k_{i}\right\rangle=e_{i}^{\top} v, \quad \text { for all } v \in V
$$

(2) For an orthonormal basis $\left\{u_{1}, \ldots, u_{r}\right\}$ for V, the kernel is

$$
K=u_{1} u_{1}^{\top}+\cdots+u_{r} u_{r}^{\top}=\sum_{j=1}^{r} u_{j} u_{j}^{\top}
$$

(3) K is such that the k_{i} span V, that is $\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}=V$, and

$$
\left\langle k_{j}, k_{i}\right\rangle=K_{i j} .
$$

Example - Motivating

For a fixed θ, show (or calculate) that the kernel of

$$
V=\ell(\theta)=\{(t \cos \theta, t \sin \theta): t \in \mathbb{R}\} \subset \mathbb{R}^{2},
$$

where V is endowed with the standard inner product on \mathbb{R}^{2}, is

$$
K(\theta)=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta & \sin \theta \cos \theta \\
\sin \theta \cos \theta & \sin ^{2} \theta
\end{array}\right]
$$

where

$$
k_{1}(\theta)=\cos \theta\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], \quad k_{2}(\theta)=\sin \theta\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] .
$$

Just verify that these satisfy the three definitions above!

Example — Inner Product defined by ...

Let $V=\mathbb{R}^{n}$ with an inner product $\langle u, v\rangle_{V}=v^{\top} Q u$, where Q is symmetric and positive definite.
The requirement

$$
v_{i}=\mathcal{L}_{i} v=e_{i}^{\top} v=\left\langle v, k_{i}\right\rangle_{V}=k_{i}^{\top} Q v
$$

implies that (having the transpose of both sides)

$$
k_{i}=Q^{-1} e_{i}
$$

Hence the kernel is

$$
K=\left[Q^{-1} e_{1}, \ldots, Q^{-1} e_{n}\right]=Q^{-1}\left[e_{1}, \ldots, e_{n}\right]=Q^{-1}
$$

Example - Inner Product defined by ...

Alternatively, an eigendecomposition of the matrix $Q=X D X^{\top}$, where D is the diagonal matrix consisting of the eigenvalues of Q and the columns of X are the corresponding orthonormal eigenvectors, can be used to construct an orthonormal basis for V; that is,

$$
\mathcal{B}=\left\{X D^{-1 / 2} e_{1}, \ldots, X D^{-1 / 2} e_{n}\right\} .
$$

Using this basis, in the second definition of the kernel, yields

$$
\begin{aligned}
K & =\sum_{i=1}^{n}\left(X D^{-1 / 2} e_{i}\right)\left(X D^{-1 / 2} e_{i}\right)^{\top}=\sum_{i=1}^{n} X D^{-1 / 2} \underbrace{e_{i} e_{i}^{\top}}_{I_{i}} D^{-1 / 2} X^{\top} \\
& =X D^{-1 / 2}\left(\sum_{i=1}^{n} I_{i}\right) D^{-1 / 2} X^{\top}=X D^{-1} X^{\top}=Q^{-1}
\end{aligned}
$$

Note also that for $k_{j}=Q^{-1} e_{j}$, we have

$$
\left\langle k_{j}, k_{i}\right\rangle_{V}=\left\langle Q^{-1} e_{j}, Q^{-1} e_{i}\right\rangle_{V}=e_{i}^{\top} Q^{-1} Q Q^{-1} e_{j}=e_{i} K e_{j}=K_{i j}
$$

Example - A Trivial One!

Let $V \subset \mathbb{R}^{n}$ be a subspace spanned by the vector $v=(1,1)$ and endowed with the inner product giving the vector v unit norm, that is, $\langle v, v\rangle_{V}=1$.

No reference to "what exactly the inner product is" is given!
Since $\{v=(1,1)\}$ is an orthonormal basis for V, the kernel is,

$$
K=v v^{\top}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[k_{1}, k_{2}\right] .
$$

What is the inner product therefore?
Note that $\left\langle k_{i}, k_{j}\right\rangle_{V}=1$ for all $i, j=1,2$. Use this to complete the following exercise (consequence of the third definition): show that for $x, y \in V$, written as,

$$
\begin{array}{ll}
x=x_{1} k_{1}+x_{2} k_{2}=K \alpha, & \alpha=\left[x_{1}, x_{2}\right]^{\top}, \\
y=y_{1} k_{1}+y_{2} k_{2}=K \beta, & \beta=\left[y_{1}, y_{2}\right]^{\top},
\end{array}
$$

the inner product is,

$$
\langle x, y\rangle_{V}=\langle K \alpha, K \beta\rangle_{V}=\beta^{\top} K \alpha
$$

Example - Yet Another Trivial One!

For the kernel

$$
K=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

the associated configuration, the subspace V, can be found as follows: since K is $2 \times 2, V \subset \mathbb{R}^{2}$; since V is the span of $k_{1}=(1,0)$ and $k_{2}=(0,0)$, the subspace $V=\mathbb{R} \times\{0\}=\{(t, 0): t \in \mathbb{R}\} \subset \mathbb{R}^{2}$. Note also that the vector $k_{1}=(1,0)$ has a unit norm in V :

$$
\left\langle k_{1}, k_{1}\right\rangle_{V}=K_{11}=1
$$

Exercise. Find (calculate, reproduce) the inner product $\langle x, y\rangle_{V}$ for any $x=K \alpha \in V$ and $y=K \beta \in V$:

$$
\langle x, y\rangle_{V}=\beta^{\top} K \alpha
$$

The Kernel — Definitions (with Matrices) — Recall —

Let $V \subset \mathbb{R}^{n}$ be an inner product space. The kernel of V is the unique $K=\left[k_{1}, \ldots, k_{n}\right] \in \mathbb{R}^{n \times n}$ determined by any of the following three equivalent definitions.
(1) K is such that each $k_{i} \in V$ and

$$
\left\langle v, k_{i}\right\rangle=e_{i}^{\top} v, \quad \text { for all } v \in V
$$

(2) For an orthonormal basis $\left\{u_{1}, \ldots, u_{r}\right\}$ for V, the kernel is

$$
K=u_{1} u_{1}^{\top}+\cdots+u_{r} u_{r}^{\top}=\sum_{j=1}^{r} u_{j} u_{j}^{\top} .
$$

(3) K is such that the k_{i} span V, that is $\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}=V$, and

$$
\left\langle k_{j}, k_{i}\right\rangle=K_{i j} .
$$

Some Remarks - Before the Boring Stuff!

- Existence and uniqueness of K follows most easily from Definition 1 (as it boils down to solving linear systems).
- Positive (semi-)definiteness of K is apparent from Definition 2; however, might be difficult from Definition 1. Also, uniqueness is not clear from Definition 2.
- Existence of K is not clear from Definition 3; however, it has a plausible implication: for $v, w \in V$, we have $v=\sum_{j=1}^{n} \alpha_{j} k_{j}=K \alpha$, $w=\sum_{j=1}^{n} \beta_{j} k_{j}=K \beta$, and further,

$$
\langle K \alpha, K \beta\rangle_{V}=\beta^{\top} K \alpha
$$

These follows simply from the spanning set and the properties of the inner product:

$$
\langle K \alpha, K \beta\rangle_{V}=\sum_{j, i}^{n} \alpha_{j} \beta_{i}\left\langle k_{j}, k_{i}\right\rangle_{V}=\sum_{j, i}^{n} \alpha_{j} \beta_{i} K_{i j}=\beta^{\top} K \alpha
$$

Existence-Uniqueness of the Kernel

Lemma (Lemma 2.1)

Given an inner product space $V \subset \mathbb{R}^{n}$, there is precisely one matrix $K=\left[k_{1}, \ldots, k_{n}\right]$ in $\mathbb{R}^{n \times n}$ for which each $k_{i} \in V$ and satisfies

$$
\left\langle v, k_{i}\right\rangle_{V}=\mathcal{L}_{i} v=e_{i}^{\top} v, \quad \text { for all } v \in V
$$

Proof. Let $\mathcal{B}=\left\{v_{1}, \ldots, v_{r}\right\} \subset V$ be a basis for V, and let the $k_{i}=\sum_{j=1}^{r} \alpha_{j}^{i} v_{j} \in V$. Then the properties of the Gram matrix in solving the linear system of equations (obtained using $e_{i}^{\top} v_{j}=\mathcal{L}_{i} v_{j}=\left\langle v_{j}, k_{i}\right\rangle$):

$$
b^{i}=\left[\begin{array}{c}
e_{i}^{\top} v_{1} \\
\vdots \\
e_{i}^{\top} v_{r}
\end{array}\right]=\left[\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \cdots & \left\langle v_{1}, v_{r}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle v_{r}, v_{1}\right\rangle & \cdots & \left\langle v_{r}, v_{r}\right\rangle
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{i} \\
\vdots \\
\alpha_{r}^{i}
\end{array}\right]=G \alpha^{i}
$$

for $i=1, \ldots, n$, yields the existence and uniqueness.

Reproducing Property of the Kernel

Lemma (Lemma 2.2)

If K is such that the k_{i} span V and $\left\langle k_{j}, k_{i}\right\rangle_{V}=K_{i j}$, then

$$
\left\langle v, k_{i}\right\rangle_{V}=\mathcal{L}_{i} v=e_{i}^{\top} v, \quad \text { for all } v \in V .
$$

Proof. Fix $v \in V$ and since k_{i} is in the span, we have $v=\sum_{i} \alpha_{i} k_{i}=K \alpha$. Therefore,

$$
\left\langle v, k_{i}\right\rangle=\left\langle K \alpha, K e_{i}\right\rangle=e_{i}^{\top} K \alpha=e_{i}^{\top} v=\mathcal{L}_{i} v
$$

completes the proof.
Note that we used the fact that from Definition 3, it follows that

$$
\left\langle K \alpha, K e_{i}\right\rangle=e_{i}^{\top} K \alpha .
$$

Entries of the Kernel

Lemma (Lemma 2.3)

If K is such that the $k_{i} \in V$ and $\left\langle v, k_{i}\right\rangle_{V}=\mathcal{L}_{i} v=e_{i}^{\top} v$ for all $v \in V$, then the k_{i} span V and

$$
\left\langle k_{j}, k_{i}\right\rangle_{V}=K_{i j} .
$$

Proof. The trivial part follows from

$$
\left\langle k_{j}, k_{i}\right\rangle=e_{i}^{\top} k_{j}=K_{i j} .
$$

To show span $\left\{k_{1}, \ldots, k_{n}\right\}=V$, assume the contrapositive: there is a non-zero $k \in V$ which is orthogonal to each and every k_{i}; that is,

$$
\left\langle k, k_{i}\right\rangle=0, \quad \text { for all } i .
$$

However, the assumetions states that $\left\langle k, k_{i}\right\rangle=e_{i}^{\top} k$ for every i; hence $k=0$ vector; hence a contradiction. Thus, $\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}=V$.

Kernel as Outer Product

Lemma (Lemma 2.4)

If $\left\{u_{1}, \ldots, u_{r}\right\}$ is an orthonormal basis for V, then

$$
K=u_{1} u_{1}^{\top}+\cdots+u_{r} u_{r}^{\top}=\sum_{i=1}^{r} u_{i} u_{i}^{\top}
$$

and satisfies

$$
\left\langle v, k_{i}\right\rangle_{V}=\mathcal{L}_{i} v=e_{i}^{\top} v, \quad \text { for all } v \in V \text {. }
$$

Proof. Let $U=\left[u_{1}, \ldots, u_{r}\right] \in \mathbb{R}^{n \times r}$ so that $K=U U^{\top}$. Write $k_{i}=K e_{i}=U U^{\top} e_{i}=U \beta$ and take an arbitrary $v=\sum_{i} \alpha_{i} u_{i}=U \alpha \in V$.
Therefore

$$
\begin{aligned}
\left\langle v, k_{i}\right\rangle & =\langle U \alpha, U \beta\rangle=\sum_{i, j} \alpha_{i} \beta_{j}\left\langle u_{i}, u_{j}\right\rangle=\sum_{i, j} \alpha_{i} \beta_{j}=\beta^{\top} \alpha \\
& =e_{i}^{\top} U \alpha=e_{i}^{\top} v=v_{i}=\mathcal{L}_{i} v .
\end{aligned}
$$

Existence of an Inner Product I

Lemma (Lemma 2.6)

Let $V=\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}$ be the space spanned by the columns of a positive semi-definite matrix $K=\left[k_{1}, \ldots, k_{n}\right] \in \mathbb{R}^{n \times n}$. Then, there exists and inner product on V satisfying $\left\langle k_{j}, k_{i}\right\rangle_{V}=K_{i j}$.

Proof. For $x=K \alpha$ and $y=K \beta$ in V, define the inner product as

$$
\langle x, y\rangle_{V}=\beta^{\top} K \alpha .
$$

It is easy to show that this is a well-defined: in the sense that for other representations of $x=K \tilde{\alpha}$ and $y=K \tilde{\beta}$ we have

$$
\begin{aligned}
\beta^{\top} K \alpha-\tilde{\beta}^{\top} K \tilde{\alpha} & =(\beta-\tilde{\beta})^{\top} K \alpha+\tilde{\beta}^{\top} K\left(\alpha-\alpha^{\top}\right) \\
& =\left[K^{\top}(\beta-\tilde{\beta})\right]^{\top} \alpha+\tilde{\beta}^{\top} K(\alpha-\tilde{\alpha})=0
\end{aligned}
$$

Existence of an Inner Product II

That is, no matter the representation; the inner product is

$$
\langle x, y\rangle_{V}=\beta^{\top} K \alpha
$$

It is not difficult to show that this is really an inner product: liearity in the first argument is clear; for the positive definiteness (of the inner product), we calculate

$$
\langle x, x\rangle_{V}=\langle K \alpha, K \alpha\rangle_{V}=\alpha^{\top} K \alpha=0
$$

since K is positive semi-definite, which implies that $K \alpha=0$. Note. This is stated as Lemma 2.5:

Uniqueness of the Inner Product Space

Lemma (Lemma 2.6)

Let $V_{1} \subset \mathbb{R}^{n}$ and $V_{2} \subset \mathbb{R}^{n}$ be two inner product spaces having the same kernel K. Then, V_{1} and V_{2} are identical spaces: $V_{1}=V_{2}$ and their inner products are the same (as above).

Proof. Since the columns of K span both V_{1} and V_{2}, then $V=V_{1}=V_{2}$. Since the inner products on V_{1} and V_{2} are uniquely determined from the Gram matrix $K_{i j}=\left\langle k_{j}, k_{i}\right\rangle_{V}$ corresponding to k_{1}, \ldots, k_{n}, and both V_{1} and V_{2} have the same matrix, their inner products are identical and further for any $u=K \alpha$ and $v=K \beta$

$$
\langle u, v\rangle_{V}=\beta^{\top} K \alpha .
$$

Continue with ...

(1) Introduction
(2) Definitions - Recall
3) Kernel of an Inner Product Subspaces

- Definitions of the Kernel \& Examples
- Remarks on the Definitions
- Equivalence of the Definitions - Lemmata

4. Extrinsic Geometry and Interpolation

Extrinsic versus Intrinsic

- In applications, knowing $V \subset \mathbb{R}^{n}$ allows us working with V using the extrinsic coordinates by writing an element of V as a vector in \mathbb{R}^{n}.
- Note that if V and W are two r-dimensional linear subspaces of \mathbb{R}^{n}, then their intrinsic geometry is the same, but their extrinsic geometry may differ unless $V=W$.

Example (The Problem at Hand)

Endow $V \subset \mathbb{R}^{n}$ with an inner product. Fix $i \in\{1, \ldots, n\}$ and consider how to find $x \in V$ satisfying

$$
f(x)=e_{i}^{\top} x=1
$$

and having the smallest norm (induced by the inner product in V).

The Problem - Interpolation

In other words, we wish to solve

Example (The Problem at Hand)

$$
\begin{aligned}
& \underset{x \in V}{\operatorname{minimise}}\|x\|_{V}^{2}=\langle x, x\rangle_{V} \\
& \text { subject to } f(x)=e_{i}^{\top} x=1
\end{aligned}
$$

The nature of the problem is better understood when the extrinsic coordinates in \mathbb{R}^{n} are considered, whether or not $V=\mathbb{R}^{n}$.
Geometrically, such a solution $x \in V$ must be orthogonal to any vector $v \in V$ satisfying

$$
f(v)=e_{i}^{\top} v=0
$$

otherwise, its norm could be decreased! That is,

$$
\langle x, v\rangle_{V}=0, \quad \text { for all } v \in V \text { subject to } e_{i}^{\top} v=0
$$

The Problem - Exercise

Exercise

Take $V=\left\{x \in \mathbb{R}^{3}: x_{1}+x_{2}=1, x_{3} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}$ and $i=1$ (or, $i=2,3$) fixed, to visualise the problem (using the standard inner product in \mathbb{R}^{n}). Then, solve the resulting problem.

Particularly, show a special attention to those vectors $v \in V$ which are perpendicular (respectively, not perpendicular) to the solution vector $x \in V$; namely, $\langle x, v\rangle_{V}=0$ (respectively, $\langle x, v\rangle_{V} \neq 0$).
In an attempt to solve the problem, you might need a basis for V; take any (suitable one)!

The Problem - Solution using Kernel I

Assume that we know the kernel $K=\left[k_{1}, \ldots, k_{n}\right]$ of the subspace $V \subset \mathbb{R}^{n}$. Then, let $x=K \alpha$ and $v=K \beta$.
Then for the first constraint,

$$
e_{i}^{\top} x=1 \Longrightarrow 1=e_{i}^{\top} K \alpha=k_{i}^{\top} \alpha
$$

and, for the second constraint, with $v=K \beta$,

$$
\langle x, v\rangle_{V}=0 \text { whenever } e_{i}^{\top} v=0 \Longrightarrow\langle K \alpha, K \beta\rangle_{V}=\beta^{\top} K \alpha=0
$$

whenever

$$
0=e_{i}^{\top} K \beta=k_{i}^{\top} \beta=\beta^{\top} k_{i}=\beta^{\top} K e_{i} .
$$

That is, the constraints turns to

$$
\begin{aligned}
k_{i}^{\top} \alpha & =1 \\
\beta^{\top} K \alpha & =0 \text { whenever } \beta^{\top} K e_{i}=0 .
\end{aligned}
$$

The Problem - Solution using Kernel II

The second constraint is satisfied when

$$
\alpha=c e_{i}, \quad c \in \mathbb{R}
$$

Hence by the first constraint, we get

$$
1=k_{i}^{\top} c e_{i}=c K_{i i} \Longrightarrow c=\frac{1}{K_{i i}} .
$$

Therefore,

$$
x=K \alpha=K c e_{i}=c k_{i}=\frac{1}{K_{i i}} k_{i} .
$$

Also note that

$$
\|x\|_{V}^{2}=\langle x, x\rangle_{V}=\frac{1}{K_{i i}^{2}}\left\langle k_{i}, k_{i}\right\rangle_{V}=\frac{1}{K_{i i}}
$$

is the minimum norm of such a solution $x \in V$.

Yet, Towards Another Definition of the Kernel

- In the above example problem, as V changes, both the kernel K and the solution $x \in V$ change. Yet, the relationship between x and K remains the same:

$$
x=\frac{1}{K_{i i}} k_{i} .
$$

- There is a geometric explanation for the columns of K solving the single-point interpolation problem: let $L_{i}: v \mapsto e_{i}^{\top} v$ denote the i th coordinate function. Then,

$$
L_{i}(v)=\left\langle v, k_{i}\right\rangle_{V}
$$

means that k_{i} is the gradient of L_{i}. In particular, the line determined by k_{i} meets the level set $\left\{v: L_{i}(v)=1\right\}$ at right angles, showing that k_{i} meets the orthogonality condition for optimality.

Geometric Definition of the Kernel

Definition (Lemma 2.8 - Geometric Interpretation)

Let $H_{i}=\left\{z \in \mathbb{R}^{n}: f(z)=e_{i}^{\top} z=1\right\}$ be the hyperplane consisting of all vectors whose i th coordinate is unity.

- If $V \cap H_{i}$ is empty then define $k_{i}=0$;
- Otherwise, let \tilde{k}_{i} be the point in the intersection $V \cap H_{i}$ that is closest to the origin. Define k_{i} to be $k_{i}=c^{2} \tilde{k}_{i}$, where $c^{2}=\left\langle\tilde{k}_{i}, \tilde{k}_{i}\right\rangle_{V}^{-1}$.

Proof. Let $v \in V$ such that $a=e_{i}^{\top} v=v_{i}$; define $w=v-a \tilde{k}_{i} \in V$. Then for $k_{i}=c^{2} \tilde{k}_{i}$, we must have

$$
\begin{aligned}
a & =v_{i}=\left\langle v, k_{i}\right\rangle_{V}=\left\langle w+a \tilde{k}_{i}, c^{2} \tilde{k}_{i}\right\rangle_{V} \\
& =c^{2}\left\langle w, \tilde{k}_{i}\right\rangle_{V}+a c^{2}\left\langle\tilde{k}_{i}, \tilde{k}_{i}\right\rangle_{V}=a c^{2}\left\langle\tilde{k}_{i}, \tilde{k}_{i}\right\rangle_{V}=a
\end{aligned}
$$

The choice of c^{2} guarantees in particular: $\left\langle k_{i}, k_{i}\right\rangle_{V_{\square}}=K_{i i}$.

Visualising Geometric Definition of the Kernel

Figure 2.1: The ellipse comprises all points one unit from the origin. It determines the chosen inner product on \mathbb{R}^{2}. The vector k_{1} is the closest point to the origin on the vertical line $x=1$. It can be found by enlarging the ellipse until it first touches the line $x=1$, or equivalently, as illustrated, it can be found by shifting the line $x=1$ horizontally until it meets the ellipse tangentially, represented by the dashed vertical line, then travelling radially outwards from the point of intersection until reaching the line $x=1$. The vector k_{1} is a scaled version of \tilde{k}_{1}. If the dashed vertical line intersects the x-axis at c then $k_{1}=c^{2} \bar{k}_{1}$. Equivalently, k_{1} is such that its tip intersects the line $x=c^{2}$. The determination of k_{2} is analogous but with respect to the horizontal line $y=1$.

Visualising Columns of the Kernel

Figure 2.2: Shown are the vectors k_{1} (red) and k_{2} (blue) corresponding to rotated versions of the inner product $\langle u, v\rangle=v^{\top} Q u$ where $Q=\operatorname{diag}\{1,4\}$. The magnitude and angle of k_{1} and k_{2} are plotted in Figure 2.3.

Figure 2.3: Plotted are the magnitude and angle of k_{1} (red) and k_{2} (blue) corresponding to rotated versions of the inner product $\langle u, v\rangle=v^{\top} Q u$ where $Q=\operatorname{diag}\{1,4\}$, as in Figure 2.2.

Visualising the Kernel of 1D subspace

Figure 2.4: Shown are k_{1} (red) and k_{2} (blue) for various one-dimensional subspaces (black) of \mathbb{R}^{2}. In all cases, the inner product is the standard Euclidean inner product. Although not shown, k_{2} is zero when V is horizontal, and k_{1} is zero when V is vertical. Therefore, the magnitude of the red vectors increases from zero to a maximum then decreases back to zero. The same occurs for the blue vectors.

Visualising Convergence to 1D subspace

Figure 2.5: Illustration of how, as the ellipse gets narrower, the two-dimensional inner product space $V=\mathbb{R}^{2}$ converges to a one-dimensional inner product space. The kernels of the subspaces are represented by red $\left(k_{1}\right)$ and blue $\left(k_{2}\right)$ vectors.

Bibliography

围 Jonathan H．Manton and Pierre－Olivier Amblard． A primer on reproducing kernel Hilbert spaces， 2015.

围 II Shan Ng．
Reproducing kernel Hilbert spaces \＆machine learning， 2024.
accessed：March 2024.
國 Vern I．Paulsen and Mrinal Raghupathi．
An Introduction to the Theory of Reproducing Kernel Hilbert Spaces． Cambridge Studies in Advanced Mathematics．Cambridge University Press， 2016.

围 Jesse Perla，Thomas J．Sargent，and John Stachurski． Orthogonal projections and their applications， 2024.
accessed：March 2024.

