Finite-Dimensional RKHS

Ömür Uğur

Institute of Applied Mathematics Middle East Technical University

RKHS (Learning) Seminars, March 2024

Ömür Uğur (IAM / METU)

Finite-Dimensional RKHS

< 47 ▶

Table of Contents

Introduction

- Definitions Recall
- 3
- Kernel of an Inner Product Subspaces
- Definitions of the Kernel & Examples
- Remarks on the Definitions
- Equivalence of the Definitions Lemmata

4 Extrinsic Geometry and Interpolation

Continue with ...

Introduction

- Definitions Recall
- Kernel of an Inner Product Subspaces
 - Definitions of the Kernel & Examples
 - Remarks on the Definitions
 - Equivalence of the Definitions Lemmata

3/41

イロト イヨト イヨト

Motivating Example

Consider a line passing through the origin in \mathbb{R}^2 , with the parametrisation:

$$\ell(\theta) = \{(t\cos\theta, t\sin\theta) : t \in \mathbb{R}\} \subset \mathbb{R}^2.$$

It can easily be shown that

$$f(\theta) = (r(\theta)\cos\theta, r(\theta)\sin\theta),$$

where $r(\theta) = p_1 \cos \theta + p_2 \sin \theta$, is the *projection* of an arbitrary point $p = (p_1, p_2) \in \mathbb{R}^2$ onto the one-dimensional line (space):

$$\operatorname{proj}_{\ell(\theta)} p = \frac{p^{\top}v}{\|v\|^2} v_{t}$$

where v is (any direction) vector of the line; for instance,

$$v = (\cos\theta, \sin\theta).$$

Ömür Uğur (IAM / METU)

RKHS Way of Representation

RKHS theory uses, instead of *one*, *two* vectors to represent the line $\ell(\theta)$. It turns out that the *kernel* of $\ell(\theta)$, in matrix form, becomes

$$K(\theta) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Note that the columns,

$$k_1(\theta) = \cos \theta \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad k_2(\theta) = \sin \theta \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix},$$

of this kernel spans the the line: span $\{k_1(\theta), k_2(\theta)\} = \ell(\theta) = V_{\theta} \subset \mathbb{R}^2$, although they are *linearly dependent*. Interestingly,

$$f(\theta) = p_1 k_1(\theta) + p_2 k_2(\theta) = K(\theta)p$$

turns out to be the projection.

Ömür Uğur (IAM / METU)

RKH!

5/41

Continue with ...

Introduction

Definitions — Recall

Kernel of an Inner Product Subspaces

- Definitions of the Kernel & Examples
- Remarks on the Definitions
- Equivalence of the Definitions Lemmata

Extrinsic Geometry and Interpolation

・ロト ・回ト ・ヨト ・ヨト

Recall — Definitions

Definition (RKHS)

Let Ω be a set. We call a subset \mathcal{H} of the set of all functions $\mathcal{F}(\Omega, \mathbb{F})$ from Ω to \mathbb{F} , that is, $\mathcal{H} \subseteq \mathcal{F}(\Omega, \mathbb{F})$, a *reproducing kernel Hilbert space* (RKHS) on Ω if,

- **1** \mathcal{H} is a vector space of $\mathcal{F}(\Omega, \mathbb{F})$;
- 2 \mathcal{H} is endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ with respect to which \mathcal{H} is a Hilbert space;
- for every $x \in \Omega$, the linear evaluation functional $\mathcal{L}_x : \mathcal{H} \to \mathbb{F}$, $f \mapsto \mathcal{L}_x f = f(x)$ is bounded.

Remark. If \mathcal{H} is an RKHS, the by Riesz representation theorem the linear evaluation functional, for each $x \in \Omega$, is given by a unique vector $k_x \in \mathcal{H}$, such that for every $f \in \mathcal{H}$,

$$f(x) = \mathcal{L}_x f = \langle f, k_x \rangle_{\mathcal{H}}.$$

7/41

・ロト ・四ト ・ヨト ・ヨト

Recall — Definitions

Definition (Reproducing Kernel)

The function k_x is called the *reproducing kernel for the point* x. The function $K(x, y) : \Omega \times \Omega \to \mathbb{F}$ defined by

$$K(x,y) = k_y(x)$$

is called the reproducing kernel for \mathcal{H} .

Remark. Note that

$$K(x,y) = k_y(x) = \langle k_y, k_x \rangle_{\mathcal{H}}$$

so that

$$K(x,y) = k_y(x) = \langle k_y, k_x \rangle_{\mathcal{H}} = \overline{\langle k_x, k_y \rangle_{\mathcal{H}}} = \overline{K(y,x)}.$$

Even, further we have for the linear *evaluation functional* $\mathcal{L}_x : \mathcal{H} \to \mathbb{F}$,

$$\|\mathcal{L}_x\|_{\mathcal{H}\to\mathbb{F}}^2 = \|k_x\|_{\mathcal{H}}^2 = \langle k_x, k_x \rangle_{\mathcal{H}} = K(x, x).$$

Ömür Uğur (IAM / METU)

Finite-Dimensional RKHS

RKHS Seminars

\mathbb{F}^n as an RKHS

For $u, v \in \mathbb{F}^n$, we let the usual inner product be $\langle u, v \rangle = v^H u = \sum_{i=1}^n \overline{v_i} u_i$. We can also think an *n*-tuple, say $x = (x_1, \dots, x_n)$, as a function, say

$$x: \Omega = \{1, \dots, n\} \to \mathbb{F}, \qquad x: i \mapsto x(i) = x_i,$$

so that with this identification \mathbb{F}^n becomes the vector space of all functions on Ω .

For the orthonormal basis $\{e_i\}_{i=1}^n$ we define the functions $e_i(j)=\delta_{ij};$ thence,

$$\mathcal{L}_i x = x(i) = x_i = \langle x, e_i \rangle_{\mathcal{H}} \,. \tag{(\star)}$$

Therefore, \mathbb{F}^n is an RKHS with the reproducing kernel for the point $i \in \Omega$ is $e_i \in \mathcal{H}$, and the reproducing kernel for \mathcal{H} is (the identity matrix)

$$K(i,j) = \langle e_j, e_i \rangle_{\mathcal{H}} = \delta_{ij}.$$
 (*)

Omür Uğur (IAM / METU)

9/41

イロト イヨト イヨト イヨト

Continue with ...

Introduction

Definitions — Recall

8 Kernel of an Inner Product Subspaces

- Definitions of the Kernel & Examples
- Remarks on the Definitions
- Equivalence of the Definitions Lemmata

Extrinsic Geometry and Interpolation

RKH:

10 / 41

Preparations

Definition (Gram Matrix)

For the given $\{v_1, \ldots, v_r\} \subset V \subset \mathbb{R}^n$ for an inner product (sub-)space, the Gram matrix $G = (G_{ij})$ is defined as

$$G_{ij} = \langle v_i, v_j \rangle_V = \langle v_j, v_i \rangle_V.$$

Let $\dim V = r$ and

$$\operatorname{span}\left\{v_1,\ldots,v_r\right\}=V.$$

This is perfectly fine to understand the inner product (sub-)space. Even further, we may choose an orthonormal basis $\{u_1, \ldots, u_r\} = V$ such that G = I.

11/41

< □ > < □ > < □ > < □ > < □ > < □ >

Preparations

Lemma (Properties of Gram Matrix)

For the set of vectors $\{v_1, \ldots, v_r\}$, the Gram matrix is

positive semi-definite;

e positive definite (and hence, nonsingular) if {v₁,...,v_r} is linearly independent.

Proof.

$$x^{\top}Gx = \sum_{i,j} x_i x_j G_{ij} = \sum_{i,j} x_i x_j \langle v_i, v_j \rangle = \sum_{i,j} \langle x_i v_i, x_j v_j \rangle = \left\langle \sum_{i,j} x_i v_i, \sum_{i,j} x_j v_j \right\rangle = \|\sum_s x_s v_s\|^2 \ge 0.$$

2 Using above, $\|\sum_s x_s v_s\|^2 = 0 \iff \|\sum_s x_s v_s\| = 0 \iff x_s = 0$ since the v_s are linearly independent.

イロト イヨト イヨト イヨト

Preparations - RKHS

RKHS Way Configuration

Find (rather than the basis) a *unique*, ordered, spanning set $\{k_1, \ldots, k_n\}$ for $V \subset \mathbb{R}^n$ by the rule that k_i is the *unique* vector in V satisfying (certain condition such as)

$$\langle v, k_i \rangle_V = \mathcal{L}_i v = v(i) = e_i^\top v = v_i, \quad \text{for all } v \in V$$

Notice the use of the (extrinsic) coordinates in \mathbb{R}^n rather than the (intrinsic) coordinates in V for the vector $v \in V$. Although the term $v_i = e_i^\top v$ looks like an inner product (the standard inner product in \mathbb{R}^n), we emphasise that

$$\mathcal{L}_i v = v_i = e_i^\top v = \langle v, e_i \rangle_{\text{standard}}$$

must be understood as the *point-evaluation* of the functional, or simply, the evaluation functional.

Ömür Uğur (IAM / METU)

13/41

The Kernel — Definitions (with Matrices)

Let $V \subset \mathbb{R}^n$ be an inner product space. The kernel of V is the unique $K = [k_1, \ldots, k_n] \in \mathbb{R}^{n \times n}$ determined by any of the following three equivalent definitions.

1 K is such that each $k_i \in V$ and

$$\langle v, k_i \rangle = e_i^\top v, \qquad \text{for all } v \in V.$$

2 For an orthonormal basis $\{u_1, \ldots, u_r\}$ for V, the kernel is

$$K = u_1 u_1^\top + \dots + u_r u_r^\top = \sum_{j=1}^r u_j u_j^\top.$$

3 K is such that the k_i span V, that is span $\{k_1, \ldots, k_n\} = V$, and

$$\langle k_j, k_i \rangle = K_{ij}.$$

ヘロト 人間ト ヘヨト ヘヨト

Example — Motivating

For a fixed θ , show (or calculate) that the kernel of

$$V = \ell(\theta) = \{(t\cos\theta, t\sin\theta) : t \in \mathbb{R}\} \subset \mathbb{R}^2,$$

where V is endowed with the standard inner product on $\mathbb{R}^2,$ is

$$K(\theta) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix} = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

where

$$k_1(\theta) = \cos \theta \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \quad k_2(\theta) = \sin \theta \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}.$$

Just verify that these satisfy the three definitions above!

< □ > < □ > < □ > < □ > < □ > < □ >

RKHS Seminars

Ömür Uğur (IAM / METU)

Example — Inner Product defined by ...

Let $V = \mathbb{R}^n$ with an inner product $\langle u, v \rangle_V = v^\top Q u$, where Q is symmetric and positive definite. The requirement

$$v_i = \mathcal{L}_i v = e_i^\top v = \langle v, k_i \rangle_V = k_i^\top Q v$$

implies that (having the transpose of both sides)

$$k_i = Q^{-1}e_i.$$

Hence the kernel is

$$K = \left[Q^{-1}e_1, \dots, Q^{-1}e_n\right] = Q^{-1}\left[e_1, \dots, e_n\right] = Q^{-1}.$$

イロン イヨン イヨン

Example — Inner Product defined by ...

Alternatively, an eigendecomposition of the matrix $Q = XDX^{\top}$, where D is the diagonal matrix consisting of the eigenvalues of Q and the columns of X are the corresponding orthonormal eigenvectors, can be used to construct an *orthonormal* basis for V; that is,

$$\mathcal{B} = \left\{ XD^{-1/2}e_1, \dots, XD^{-1/2}e_n \right\}$$

Using this basis, in the second definition of the kernel, yields

$$K = \sum_{i=1}^{n} \left(XD^{-1/2}e_i \right) \left(XD^{-1/2}e_i \right)^{\top} = \sum_{i=1}^{n} XD^{-1/2} \underbrace{e_i e_i^{\top}}_{I_i} D^{-1/2} X^{\top}$$
$$= XD^{-1/2} \left(\sum_{i=1}^{n} I_i \right) D^{-1/2} X^{\top} = XD^{-1} X^{\top} = Q^{-1}$$

Note also that for $k_j = Q^{-1}e_j$, we have

$$\langle k_j, k_i \rangle_V = \langle Q^{-1} e_j, Q^{-1} e_i \rangle_V = e_i^\top Q^{-1} Q Q^{-1} e_j = e_i K e_j = K_{ij}.$$

17 / 41

Example — A Trivial One!

Let $V \subset \mathbb{R}^n$ be a subspace spanned by the vector v = (1, 1) and endowed with the inner product giving the vector v unit norm, that is, $\langle v, v \rangle_V = 1$.

No reference to "what exactly the inner product is" is given! Since $\{v = (1,1)\}$ is an *orthonormal basis* for V, the kernel is,

$$K = vv^{\top} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} k_1, k_2 \end{bmatrix}.$$

What is the inner product therefore?

Note that $\langle k_i, k_j \rangle_V = 1$ for all i, j = 1, 2. Use this to complete the following exercise (consequence of the third definition): show that for $x, y \in V$, written as,

$$\begin{aligned} x &= x_1 k_1 + x_2 k_2 = K \alpha, & \alpha &= [x_1, x_2]^{\top}, \\ y &= y_1 k_1 + y_2 k_2 = K \beta, & \beta &= [y_1, y_2]^{\top}, \end{aligned}$$

the inner product is,

$$\langle x, y \rangle_V = \langle K\alpha, K\beta \rangle_V = \beta^\top K\alpha.$$

Ömür Uğur (IAM / METU)

B ► < E ► < E ► RKHS Seminars

18 / 41

RKH!

Example — Yet Another Trivial One!

For the kernel

$$K = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

the associated configuration, the subspace V, can be found as follows: since K is 2×2 , $V \subset \mathbb{R}^2$; since V is the span of $k_1 = (1,0)$ and $k_2 = (0,0)$, the subspace $V = \mathbb{R} \times \{0\} = \{(t,0) : t \in \mathbb{R}\} \subset \mathbb{R}^2$. Note also that the vector $k_1 = (1,0)$ has a unit norm in V:

$$\langle k_1, k_1 \rangle_V = K_{11} = 1.$$

Exercise. Find (calculate, reproduce) the inner product $\langle x, y \rangle_V$ for any $x = K\alpha \in V$ and $y = K\beta \in V$:

$$\langle x, y \rangle_V = \beta^\top K \alpha.$$

Omür Uğur (IAM / METU)

RKH!

19/41

The Kernel — Definitions (with Matrices) — Recall —

Let $V \subset \mathbb{R}^n$ be an inner product space. The kernel of V is the unique $K = [k_1, \ldots, k_n] \in \mathbb{R}^{n \times n}$ determined by any of the following three equivalent definitions.

• K is such that each $k_i \in V$ and

$$\langle v, k_i \rangle = e_i^\top v, \qquad \text{for all } v \in V.$$

2 For an orthonormal basis $\{u_1, \ldots, u_r\}$ for V, the kernel is

$$K = u_1 u_1^\top + \dots + u_r u_r^\top = \sum_{j=1}^r u_j u_j^\top.$$

3 K is such that the k_i span V, that is span $\{k_1, \ldots, k_n\} = V$, and

$$\langle k_j, k_i \rangle = K_{ij}$$

ヘロト 人間ト ヘヨト ヘヨト

Some Remarks — Before the Boring Stuff!

Ömür Uğu

- Existence and uniqueness of K follows most easily from Definition 1 (as it boils down to solving linear systems).
- Positive (semi-)definiteness of K is apparent from Definition 2; however, might be difficult from Definition 1. Also, uniqueness is not clear from Definition 2.
- Existence of K is not clear from Definition 3; however, it has a plausible implication: for $v, w \in V$, we have $v = \sum_{j=1}^{n} \alpha_j k_j = K \alpha$, $w = \sum_{j=1}^{n} \beta_j k_j = K \beta$, and further,

$$\langle K\alpha, K\beta \rangle_V = \beta^\top K\alpha.$$

These follows simply from the spanning set and the properties of the inner product:

$$\langle K\alpha, K\beta \rangle_V = \sum_{j,i}^n \alpha_j \beta_i \langle k_j, k_i \rangle_V = \sum_{j,i}^n \alpha_j \beta_i K_{ij} = \beta^\top K\alpha.$$
(IAM / METU) Finite-Dimensional RKHS RKHS Seminars 21/41

Existence-Uniqueness of the Kernel

Lemma (Lemma 2.1)

Given an inner product space $V \subset \mathbb{R}^n$, there is precisely one matrix $K = [k_1, \ldots, k_n]$ in $\mathbb{R}^{n \times n}$ for which each $k_i \in V$ and satisfies

$$\langle v, k_i \rangle_V = \mathcal{L}_i v = e_i^\top v, \quad \text{for all } v \in V.$$

Proof. Let $\mathcal{B} = \{v_1, \ldots, v_r\} \subset V$ be a basis for V, and let the $k_i = \sum_{j=1}^r \alpha_j^i v_j \in V$. Then the properties of the Gram matrix in solving the linear system of equations (obtained using $e_i^{\top} v_j = \mathcal{L}_i v_j = \langle v_j, k_i \rangle$):

$$b^{i} = \begin{bmatrix} e_{i}^{\top} v_{1} \\ \vdots \\ e_{i}^{\top} v_{r} \end{bmatrix} = \begin{bmatrix} \langle v_{1}, v_{1} \rangle & \cdots & \langle v_{1}, v_{r} \rangle \\ \vdots & \ddots & \vdots \\ \langle v_{r}, v_{1} \rangle & \cdots & \langle v_{r}, v_{r} \rangle \end{bmatrix} \begin{bmatrix} \alpha_{1}^{i} \\ \vdots \\ \alpha_{r}^{i} \end{bmatrix} = G\alpha^{i},$$

for $i = 1, \ldots, n$, yields the existence and uniqueness.

22 / 41

Omür Uğur (IAM / METU)

Finite-Dimensional RKHS

RKHS Seminars

< 口 > < 同 > < 回 > < 回 > < 回 > <

Reproducing Property of the Kernel

Lemma (Lemma 2.2)

If K is such that the k_i span V and $\langle k_j, k_i \rangle_V = K_{ij}$, then

$$\langle v, k_i \rangle_V = \mathcal{L}_i v = e_i^\top v, \quad \text{for all } v \in V.$$

Proof. Fix $v \in V$ and since k_i is in the span, we have $v = \sum_i \alpha_i k_i = K \alpha$. Therefore,

$$\langle v, k_i \rangle = \langle K\alpha, Ke_i \rangle = e_i^\top K\alpha = e_i^\top v = \mathcal{L}_i v$$

completes the proof.

Note that we used the fact that from Definition 3, it follows that

$$\langle K\alpha, Ke_i \rangle = e_i^\top K\alpha.$$

Ömür Uğur (IAM / METU)

23/41

イロン イヨン イヨン

Entries of the Kernel

Lemma (Lemma 2.3)

If K is such that the $k_i \in V$ and $\langle v, k_i \rangle_V = \mathcal{L}_i v = e_i^\top v$ for all $v \in V$, then the k_i span V and

$$\langle k_j, k_i \rangle_V = K_{ij}.$$

Proof. The trivial part follows from

$$\langle k_j, k_i \rangle = e_i^\top k_j = K_{ij}.$$

To show span $\{k_1, \ldots, k_n\} = V$, assume the contrapositive: there is a non-zero $k \in V$ which is orthogonal to each and every k_i ; that is,

$$\langle k, k_i \rangle = 0,$$
 for all i .

However, the assumptions states that $\langle k, k_i \rangle = e_i^\top k$ for every *i*; hence k = 0 vector; hence a contradiction. Thus, span $\{k_1, \ldots, k_n\} = V$.

24 / 41

Kernel as Outer Product

Lemma (Lemma 2.4)

If $\{u_1,\ldots,u_r\}$ is an orthonormal basis for V, then

$$K = u_1 u_1^\top + \dots + u_r u_r^\top = \sum_{i=1}^r u_i u_i^\top$$

and satisfies

$$\langle v, k_i \rangle_V = \mathcal{L}_i v = e_i^\top v, \quad \text{for all } v \in V.$$

Proof. Let $U = [u_1, \ldots, u_r] \in \mathbb{R}^{n \times r}$ so that $K = UU^{\top}$. Write $k_i = Ke_i = UU^{\top}e_i = U\beta$ and take an arbitrary $v = \sum_i \alpha_i u_i = U\alpha \in V$. Therefore

$$\begin{split} \langle v, k_i \rangle &= \langle U\alpha, U\beta \rangle = \sum_{i,j} \alpha_i \beta_j \langle u_i, u_j \rangle = \sum_{i,j} \alpha_i \beta_j = \beta^\top \alpha \\ &= e_i^\top U\alpha = e_i^\top v = v_i = \mathcal{L}_i v. \end{split}$$

Ömür Uğur (IAM / METU)

RKHS Seminars

Lemma (Lemma 2.6)

Let $V = \text{span} \{k_1, \ldots, k_n\}$ be the space spanned by the columns of a positive semi-definite matrix $K = [k_1, \ldots, k_n] \in \mathbb{R}^{n \times n}$. Then, there exists and inner product on V satisfying $\langle k_j, k_i \rangle_V = K_{ij}$.

Proof. For $x = K\alpha$ and $y = K\beta$ in V, define the inner product as

$$\langle x, y \rangle_V = \beta^\top K \alpha.$$

It is easy to show that this is a well-defined: in the sense that for other representations of $x=K\tilde{\alpha}$ and $y=K\tilde{\beta}$ we have

$$\beta^{\top} K \alpha - \tilde{\beta}^{\top} K \tilde{\alpha} = (\beta - \tilde{\beta})^{\top} K \alpha + \tilde{\beta}^{\top} K (\alpha - \alpha^{\top})$$
$$= \left[K^{\top} (\beta - \tilde{\beta}) \right]^{\top} \alpha + \tilde{\beta}^{\top} K (\alpha - \tilde{\alpha}) = 0$$

26 / 41

イロト イヨト イヨト

Existence of an Inner Product II

That is, no matter the representation; the inner product is

$$\langle x, y \rangle_V = \beta^\top K \alpha.$$

It is not difficult to show that this is really an inner product: liearity in the first argument is clear; for the positive definiteness (of the inner product), we calculate

$$\langle x, x \rangle_V = \langle K\alpha, K\alpha \rangle_V = \alpha^\top K\alpha = 0,$$

since K is positive semi-definite, which implies that $K\alpha = 0$. Note. This is stated as Lemma 2.5:

RKHS Seminars

Ömür Uğur (IAM / METU)

Lemma (Lemma 2.6)

Let $V_1 \subset \mathbb{R}^n$ and $V_2 \subset \mathbb{R}^n$ be two inner product spaces having the same kernel K. Then, V_1 and V_2 are identical spaces: $V_1 = V_2$ and their inner products are the same (as above).

Proof. Since the columns of K span both V_1 and V_2 , then $V = V_1 = V_2$. Since the inner products on V_1 and V_2 are uniquely determined from the Gram matrix $K_{ij} = \langle k_j, k_i \rangle_V$ corresponding to k_1, \ldots, k_n , and both V_1 and V_2 have the same matrix, their inner products are identical and further for any $u = K\alpha$ and $v = K\beta$

$$\langle u, v \rangle_V = \beta^\top K \alpha.$$

・ロト ・回ト ・ ヨト ・ ヨト

Continue with ...

Introduction

Definitions — Recall

Kernel of an Inner Product Subspaces

- Definitions of the Kernel & Examples
- Remarks on the Definitions
- Equivalence of the Definitions Lemmata

4 Extrinsic Geometry and Interpolation

・ロト ・回ト ・ヨト ・ヨト

Extrinsic versus Intrinsic

- In applications, knowing V ⊂ ℝⁿ allows us working with V using the extrinsic coordinates by writing an element of V as a vector in ℝⁿ.
- Note that if V and W are two r-dimensional linear subspaces of ℝⁿ, then their *intrinsic* geometry is the same, but their *extrinsic* geometry may differ unless V = W.

Example (The Problem at Hand)

Endow $V \subset \mathbb{R}^n$ with an inner product. Fix $i \in \{1, ..., n\}$ and consider how to find $x \in V$ satisfying

$$f(x) = e_i^\top x = 1$$

and having the *smallest* norm (induced by the inner product in V).

Ömür Uğur (IAM / METU)

< ロ > < 同 > < 回 > < 回 > < 回 >

The Problem — Interpolation

In other words, we wish to solve

Example (The Problem at Hand)

The nature of the problem is better understood when the extrinsic coordinates in \mathbb{R}^n are considered, whether or not $V = \mathbb{R}^n$. Geometrically, such a solution $x \in V$ must be *orthogonal* to any vector $v \in V$ satisfying

$$f(v) = e_i^\top v = 0;$$

otherwise, its norm could be decreased! That is,

$$\langle x, v \rangle_V = 0$$
, for all $v \in V$ subject to $e_i^\top v = 0$.

31/41

Ömür Uğur (IAM / METU)

< ロ > < 同 > < 回 > < 回 > < 回 >

The Problem — Exercise

Exercise

Take $V = \{x \in \mathbb{R}^3 : x_1 + x_2 = 1, x_3 \in \mathbb{R}\} \subset \mathbb{R}^3$ and i = 1 (or, i = 2, 3) fixed, to visualise the problem (using the standard inner product in \mathbb{R}^n). Then, solve the resulting problem.

Particularly, show a special attention to those vectors $v \in V$ which are perpendicular (respectively, not perpendicular) to the solution vector $x \in V$; namely, $\langle x, v \rangle_V = 0$ (respectively, $\langle x, v \rangle_V \neq 0$). In an attempt to solve the problem, you might need a basis for V; take any (suitable one)!

32 / 41

・ロト ・四ト ・ヨト ・ ヨト

The Problem — Solution using Kernel I

Assume that we know the kernel $K = [k_1, \ldots, k_n]$ of the subspace $V \subset \mathbb{R}^n$. Then, let $x = K\alpha$ and $v = K\beta$. Then for the first constraint,

$$e_i^\top x = 1 \implies 1 = e_i^\top K \alpha = k_i^\top \alpha$$

and, for the second constraint, with $\boldsymbol{v}=\boldsymbol{K}\boldsymbol{\beta}\text{,}$

$$\langle x, v \rangle_V = 0$$
 whenever $e_i^\top v = 0 \implies \langle K \alpha, K \beta \rangle_V = \beta^\top K \alpha = 0,$

whenever

$$0 = e_i^\top K\beta = k_i^\top \beta = \beta^\top k_i = \beta^\top K e_i.$$

That is, the constraints turns to

$$k_i^{\top} \alpha = 1$$
 (first)
$$\beta^{\top} K \alpha = 0 \text{ whenever } \beta^{\top} K e_i = 0.$$
 (secon

RKHS Seminars

33 / 41

Omür Uğur (IAM / METU)

Finite-Dimensional RKHS

The Problem — Solution using Kernel II

The second constraint is satisfied when

$$\alpha = ce_i, \qquad c \in \mathbb{R}.$$

Hence by the first constraint, we get

$$1 = k_i^\top c e_i = c K_{ii} \implies c = \frac{1}{K_{ii}}.$$

Therefore,

$$x = K\alpha = Kce_i = ck_i = \frac{1}{K_{ii}}k_i.$$

Also note that

$$||x||_V^2 = \langle x, x \rangle_V = \frac{1}{K_{ii}^2} \langle k_i, k_i \rangle_V = \frac{1}{K_{ii}}$$

is the minimum norm of such a solution $x \in V$.

Ömür Uğur (IAM / METU)

Yet, Towards Another Definition of the Kernel

• In the above example problem, as V changes, both the kernel K and the solution $x \in V$ change. Yet, the relationship between x and K remains the same:

$$x = \frac{1}{K_{ii}}k_i.$$

 There is a geometric explanation for the columns of K solving the single-point interpolation problem: let L_i : v → e_i^T v denote the *i*th coordinate function. Then,

$$L_i(v) = \langle v, k_i \rangle_V$$

means that k_i is the gradient of L_i . In particular, the line determined by k_i meets the level set $\{v : L_i(v) = 1\}$ at right angles, showing that k_i meets the orthogonality condition for optimality.

Ömür Uğur (IAM / METU)

< ロ > < 同 > < 回 > < 回 > < 回 >

RKH!

35 / 41

Geometric Definition of the Kernel

Definition (Lemma 2.8 — Geometric Interpretation)

Let $H_i = \{z \in \mathbb{R}^n : f(z) = e_i^\top z = 1\}$ be the hyperplane consisting of all vectors whose *i*th coordinate is unity.

- If $V \cap H_i$ is empty then define $k_i = 0$;
- Otherwise, let \tilde{k}_i be the point in the intersection $V \cap H_i$ that is closest to the origin. Define k_i to be $k_i = c^2 \tilde{k}_i$, where $c^2 = \left\langle \tilde{k}_i, \tilde{k}_i \right\rangle_V^{-1}$.

Proof. Let $v \in V$ such that $a = e_i^\top v = v_i$; define $w = v - a\tilde{k}_i \in V$. Then for $k_i = c^2 \tilde{k}_i$, we must have

$$a = v_i = \langle v, k_i \rangle_V = \left\langle w + a\tilde{k}_i, c^2 \tilde{k}_i \right\rangle_V$$
$$= c^2 \left\langle w, \tilde{k}_i \right\rangle_V + ac^2 \left\langle \tilde{k}_i, \tilde{k}_i \right\rangle_V = ac^2 \left\langle \tilde{k}_i, \tilde{k}_i \right\rangle_V = a.$$

The choice of c^2 guarantees in particular: $\langle k_i, k_i \rangle_{V_{\Box}} = K_{ii}$

Ömür Uğur (IAM / METU)

Finite-Dimensional RKHS

Visualising Geometric Definition of the Kernel

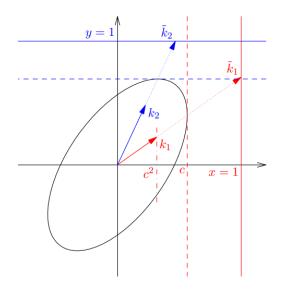


Figure 2.1: The ellipse comprises all points one unit from the origin. It determines the chosen inner product on \mathbb{R}^3 . The vector k_1 is the closest point to the origin on the vertical line z = 1. It can be found by enlarging the ellipse unit it first touches the line x = 1 to equivalently, as allibrated, it can be found by shifting the line x = 1 horizontally until it meets the ellipse tangentially, represented by the dashed vertical line, theraveling radially outwards from the point of intersection until reaching the line x = 1. The vector k_1 is a scaled version of k_1 . If the dashed vertical line intersects the x-axis at c them $k_1 = c^2 k_1$. Equivalently, k_1 is scaled that its tip intersects the line x = d. The determination of k_2 is analogous but with respect to the horizontal line y = 1.

37 / 41

э

< □ > < □ > < □ > < □ > < □ >

Visualising Columns of the Kernel

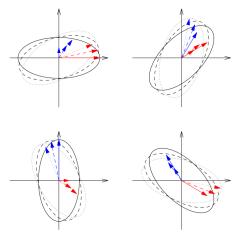


Figure 2.2: Shown are the vectors k_1 (red) and k_2 (blue) corresponding to rotated versions of the inner product $\langle u, v \rangle = v^\top Q u$ where $Q = \text{diag}\{1, 4\}$. The magnitude and angle of k_1 and k_2 are plotted in Figure 2.3.

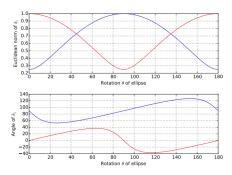


Figure 2.3: Plotted are the magnitude and angle of k_1 (red) and k_2 (blue) corresponding to rotated versions of the inner product $\langle u, v \rangle = v^\top Q u$ where Q = diag(1, 4), as in Figure 2.2.

< □ > < □ > < □ > < □ > < □ >

38 / 41

э

Visualising the Kernel of 1D subspace

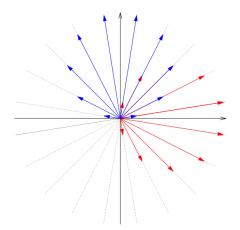


Figure 2.4: Shown are k_1 (red) and k_2 (blue) for various one-dimensional subspaces (black) of \mathbb{R}^2 . In all cases, the inner product is the standard Euclidean inner product. Although not shown, k_2 is zero when V is horizontal, and k_1 is zero when V is vertical. Therefore, the magnitude of the red vectors increases from zero to a maximum then decreases back to zero. The same occurs for the blue vectors.

Ömür Uğur (IAM / METU)

Finite-Dimensional RKHS

RKHS Seminars

・ロン ・四 と ・ ヨ と ・ ヨ と

39 / 41

Visualising Convergence to 1D subspace

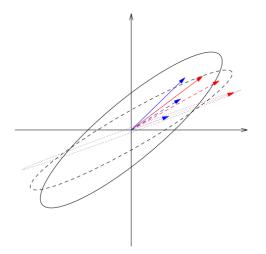


Figure 2.5: Illustration of how, as the ellipse gets narrower, the two-dimensional inner product space $V = \mathbb{R}^2$ converges to a one-dimensional inner product space. The kernels of the subspaces are represented by red (k_1) and blue (k_2) vectors.

Ömür Uğur (IAM / METU)

Finite-Dimensional RKHS

RKHS Seminars

A (1) > A (2) > A

40 / 41

Bibliography

Jonathan H. Manton and Pierre-Olivier Amblard.

A primer on reproducing kernel Hilbert spaces, 2015.

II Shan Ng.

Reproducing kernel Hilbert spaces & machine learning, 2024. accessed: March 2024.

- Vern I. Paulsen and Mrinal Raghupathi. An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.
 - Jesse Perla, Thomas J. Sargent, and John Stachurski. Orthogonal projections and their applications, 2024. accessed: March 2024.

イロト イヨト イヨト