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Ömür Uğur (IAM / METU) Finite-Dimensional RKHS RKHS Seminars 1 / 41



RKHS

Table of Contents

1 Introduction

2 Definitions — Recall

3 Kernel of an Inner Product Subspaces
Definitions of the Kernel & Examples
Remarks on the Definitions
Equivalence of the Definitions — Lemmata

4 Extrinsic Geometry and Interpolation
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Motivating Example

Consider a line passing through the origin in R2, with the parametrisation:

ℓ(θ) = {(t cos θ, t sin θ) : t ∈ R} ⊂ R2.

It can easily be shown that

f(θ) = (r(θ) cos θ, r(θ) sin θ),

where r(θ) = p1 cos θ + p2 sin θ, is the projection of an arbitrary point
p = (p1, p2) ∈ R2 onto the one-dimensional line (space):

projℓ(θ) p = p⊤v

∥v∥2 v,

where v is (any direction) vector of the line; for instance,

v = (cos θ, sin θ).
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RKHS Way of Representation

RKHS theory uses, instead of one, two vectors to represent the line ℓ(θ).
It turns out that the kernel of ℓ(θ), in matrix form, becomes

K(θ) =

[
cos θ
sin θ

] [
cos θ sin θ

]
=

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
.

Note that the columns,

k1(θ) = cos θ

[
cos θ
sin θ

]
, k2(θ) = sin θ

[
cos θ
sin θ

]
,

of this kernel spans the the line: span {k1(θ), k2(θ)} = ℓ(θ) = Vθ ⊂ R2,
although they are linearly dependent. Interestingly,

f(θ) = p1k1(θ) + p2k2(θ) = K(θ)p

turns out to be the projection.
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Recall — Definitions

Definition (RKHS)

Let Ω be a set. We call a subset H of the set of all functions F(Ω,F)
from Ω to F, that is, H ⊆ F(Ω,F), a reproducing kernel Hilbert space
(RKHS) on Ω if,

1 H is a vector space of F(Ω,F);
2 H is endowed with an inner product ⟨·, ·⟩H with respect to which H is

a Hilbert space;

3 for every x ∈ Ω, the linear evaluation functional Lx : H → F,
f 7→ Lxf = f(x) is bounded.

Remark. If H is an RKHS, the by Riesz representation theorem the linear
evaluation functional, for each x ∈ Ω, is given by a unique vector kx ∈ H,
such that for every f ∈ H,

f(x) = Lxf = ⟨f, kx⟩H .
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Recall — Definitions

Definition (Reproducing Kernel)

The function kx is called the reproducing kernel for the point x. The
function K(x, y) : Ω× Ω → F defined by

K(x, y) = ky(x)

is called the reproducing kernel for H.

Remark. Note that

K(x, y) = ky(x) = ⟨ky, kx⟩H
so that

K(x, y) = ky(x) = ⟨ky, kx⟩H = ⟨kx, ky⟩H = K(y, x).

Even, further we have for the linear evaluation functional Lx : H → F,

∥Lx∥2H→F = ∥kx∥2H = ⟨kx, kx⟩H = K(x, x).
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Fn as an RKHS

For u, v ∈ Fn, we let the usual inner product be ⟨u, v⟩ = vHu =
∑n

i=1 viui.
We can also think an n-tuple, say x = (x1, . . . , xn), as a function, say

x : Ω = {1, . . . , n} → F, x : i 7→ x(i) = xi,

so that with this identification Fn becomes the vector space of all
functions on Ω.
For the orthonormal basis {ei}ni=1 we define the functions ei(j) = δij ;
thence,

Lix = x(i) = xi = ⟨x, ei⟩H . (⋆)

Therefore, Fn is an RKHS with the reproducing kernel for the point i ∈ Ω
is ei ∈ H, and the reproducing kernel for H is (the identity matrix)

K(i, j) = ⟨ej , ei⟩H = δij . (⋆)
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Preparations

Definition (Gram Matrix)

For the given {v1, . . . , vr} ⊂ V ⊂ Rn for an inner product (sub-)space, the
Gram matrix G = (Gij) is defined as

Gij = ⟨vi, vj⟩V = ⟨vj , vi⟩V .

Let dimV = r and
span {v1, . . . , vr} = V.

This is perfectly fine to understand the inner product (sub-)space. Even
further, we may choose an orthonormal basis {u1, . . . , ur} = V such that
G = I.
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Preparations

Lemma (Properties of Gram Matrix)

For the set of vectors {v1, . . . , vr}, the Gram matrix is

1 positive semi-definite;

2 positive definite (and hence, nonsingular) if {v1, . . . , vr} is linearly
independent.

Proof.

1 x⊤Gx =
∑

i,j xixjGij =
∑

i,j xixj ⟨vi, vj⟩ =
∑

i,j ⟨xivi, xjvj⟩ =〈∑
i,j xivi,

∑
i,j xjvj

〉
= ∥
∑

s xsvs∥
2 ≥ 0.

2 Using above, ∥
∑

s xsvs∥
2 = 0 ⇐⇒ ∥

∑
s xsvs∥ = 0 ⇐⇒ xs = 0

since the vs are linearly independent.
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Preparations - RKHS

RKHS Way Configuration

Find (rather than the basis) a unique, ordered, spanning set {k1, . . . , kn}
for V ⊂ Rn by the rule that ki is the unique vector in V satisfying (certain
condition such as)

⟨v, ki⟩V = Liv = v(i) = e⊤i v = vi, for all v ∈ V.

Notice the use of the (extrinsic) coordinates in Rn rather than the
(intrinsic) coordinates in V for the vector v ∈ V .
Although the term vi = e⊤i v looks like an inner product (the standard
inner product in Rn), we emphasise that

Liv = vi = e⊤i v = ⟨v, ei⟩standard

must be understood as the point-evaluation of the functional, or simply,
the evaluation functional.
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The Kernel — Definitions (with Matrices)

Let V ⊂ Rn be an inner product space. The kernel of V is the unique
K = [k1, . . . , kn] ∈ Rn×n determined by any of the following three
equivalent definitions.

1 K is such that each ki ∈ V and

⟨v, ki⟩ = e⊤i v, for all v ∈ V.

2 For an orthonormal basis {u1, . . . , ur} for V , the kernel is

K = u1u
⊤
1 + · · ·+ uru

⊤
r =

r∑
j=1

uju
⊤
j .

3 K is such that the ki span V , that is span {k1, . . . , kn} = V , and

⟨kj , ki⟩ = Kij .
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Example — Motivating

For a fixed θ, show (or calculate) that the kernel of

V = ℓ(θ) = {(t cos θ, t sin θ) : t ∈ R} ⊂ R2,

where V is endowed with the standard inner product on R2, is

K(θ) =

[
cos θ
sin θ

] [
cos θ sin θ

]
=

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
,

where

k1(θ) = cos θ

[
cos θ
sin θ

]
, k2(θ) = sin θ

[
cos θ
sin θ

]
.

Just verify that these satisfy the three definitions above!
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Example — Inner Product defined by . . .

Let V = Rn with an inner product ⟨u, v⟩V = v⊤Qu, where Q is symmetric
and positive definite.
The requirement

vi = Liv = e⊤i v = ⟨v, ki⟩V = k⊤i Qv

implies that (having the transpose of both sides)

ki = Q−1ei.

Hence the kernel is

K =
[
Q−1e1, . . . , Q

−1en
]
= Q−1 [e1, . . . , en] = Q−1.
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Example — Inner Product defined by . . .

Alternatively, an eigendecomposition of the matrix Q = XDX⊤, where D
is the diagonal matrix consisting of the eigenvalues of Q and the columns
of X are the corresponding orthonormal eigenvectors, can be used to
construct an orthonormal basis for V ; that is,

B =
{
XD−1/2e1, . . . , XD−1/2en

}
.

Using this basis, in the second definition of the kernel, yields

K =

n∑
i=1

(
XD−1/2ei

)(
XD−1/2ei

)⊤
=

n∑
i=1

XD−1/2 eie
⊤
i︸︷︷︸

Ii

D−1/2X⊤

= XD−1/2

(
n∑

i=1

Ii

)
D−1/2X⊤ = XD−1X⊤ = Q−1

Note also that for kj = Q−1ej , we have

⟨kj , ki⟩V =
〈
Q−1ej , Q

−1ei
〉
V
= e⊤i Q

−1QQ−1ej = eiKej = Kij .
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Example — A Trivial One!

Let V ⊂ Rn be a subspace spanned by the vector v = (1, 1) and endowed
with the inner product giving the vector v unit norm, that is, ⟨v, v⟩V = 1.

No reference to “what exactly the inner product is” is given!
Since {v = (1, 1)} is an orthonormal basis for V , the kernel is,

K = vv⊤ =

[
1 1
1 1

]
= [k1, k2] .

What is the inner product therefore?
Note that ⟨ki, kj⟩V = 1 for all i, j = 1, 2. Use this to complete the
following exercise (consequence of the third definition): show that for
x, y ∈ V , written as,

x = x1k1 + x2k2 = Kα, α = [x1, x2]
⊤,

y = y1k1 + y2k2 = Kβ, β = [y1, y2]
⊤,

the inner product is,

⟨x, y⟩V = ⟨Kα,Kβ⟩V = β⊤Kα.
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Example — Yet Another Trivial One!

For the kernel

K =

[
1 0
0 0

]
the associated configuration, the subspace V , can be found as follows:
since K is 2× 2, V ⊂ R2; since V is the span of k1 = (1, 0) and
k2 = (0, 0), the subspace V = R× {0} = {(t, 0) : t ∈ R} ⊂ R2.
Note also that the vector k1 = (1, 0) has a unit norm in V :

⟨k1, k1⟩V = K11 = 1.

Exercise. Find (calculate, reproduce) the inner product ⟨x, y⟩V for any
x = Kα ∈ V and y = Kβ ∈ V :

⟨x, y⟩V = β⊤Kα.
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The Kernel — Definitions (with Matrices) — Recall —

Let V ⊂ Rn be an inner product space. The kernel of V is the unique
K = [k1, . . . , kn] ∈ Rn×n determined by any of the following three
equivalent definitions.

1 K is such that each ki ∈ V and

⟨v, ki⟩ = e⊤i v, for all v ∈ V.

2 For an orthonormal basis {u1, . . . , ur} for V , the kernel is

K = u1u
⊤
1 + · · ·+ uru

⊤
r =

r∑
j=1

uju
⊤
j .

3 K is such that the ki span V , that is span {k1, . . . , kn} = V , and

⟨kj , ki⟩ = Kij .
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Some Remarks — Before the Boring Stuff!

Existence and uniqueness of K follows most easily from Definition 1
(as it boils down to solving linear systems).

Positive (semi-)definiteness of K is apparent from Definition 2;
however, might be difficult from Definition 1. Also, uniqueness is not
clear from Definition 2.

Existence of K is not clear from Definition 3; however, it has a
plausible implication: for v, w ∈ V , we have v =

∑n
j=1 αjkj = Kα,

w =
∑n

j=1 βjkj = Kβ, and further,

⟨Kα,Kβ⟩V = β⊤Kα.

These follows simply from the spanning set and the properties of the
inner product:

⟨Kα,Kβ⟩V =

n∑
j,i

αjβi ⟨kj , ki⟩V =

n∑
j,i

αjβiKij = β⊤Kα.
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Existence-Uniqueness of the Kernel

Lemma (Lemma 2.1)

Given an inner product space V ⊂ Rn, there is precisely one matrix
K = [k1, . . . , kn] in Rn×n for which each ki ∈ V and satisfies

⟨v, ki⟩V = Liv = e⊤i v, for all v ∈ V.

Proof. Let B = {v1, . . . , vr} ⊂ V be a basis for V , and let the
ki =

∑r
j=1 α

i
jvj ∈ V . Then the properties of the Gram matrix in solving

the linear system of equations (obtained using e⊤i vj = Livj = ⟨vj , ki⟩):

bi =

e
⊤
i v1
...

e⊤i vr

 =

⟨v1, v1⟩ · · · ⟨v1, vr⟩
...

. . .
...

⟨vr, v1⟩ · · · ⟨vr, vr⟩


α

i
1
...
αi
r

 = Gαi,

for i = 1, . . . , n, yields the existence and uniqueness.
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Reproducing Property of the Kernel

Lemma (Lemma 2.2)

If K is such that the ki span V and ⟨kj , ki⟩V = Kij , then

⟨v, ki⟩V = Liv = e⊤i v, for all v ∈ V.

Proof. Fix v ∈ V and since ki is in the span, we have v =
∑

i αiki = Kα.
Therefore,

⟨v, ki⟩ = ⟨Kα,Kei⟩ = e⊤i Kα = e⊤i v = Liv

completes the proof.
Note that we used the fact that from Definition 3, it follows that

⟨Kα,Kei⟩ = e⊤i Kα.
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Entries of the Kernel

Lemma (Lemma 2.3)

If K is such that the ki ∈ V and ⟨v, ki⟩V = Liv = e⊤i v for all v ∈ V , then
the ki span V and

⟨kj , ki⟩V = Kij .

Proof. The trivial part follows from

⟨kj , ki⟩ = e⊤i kj = Kij .

To show span {k1, . . . , kn} = V , assume the contrapositive: there is a
non-zero k ∈ V which is orthogonal to each and every ki; that is,

⟨k, ki⟩ = 0, for all i.

However, the assumetions states that ⟨k, ki⟩ = e⊤i k for every i; hence
k = 0 vector; hence a contradiction. Thus, span {k1, . . . , kn} = V .
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Kernel as Outer Product

Lemma (Lemma 2.4)

If {u1, . . . , ur} is an orthonormal basis for V , then

K = u1u
⊤
1 + · · ·+ uru

⊤
r =

r∑
i=1

uiu
⊤
i

and satisfies
⟨v, ki⟩V = Liv = e⊤i v, for all v ∈ V.

Proof. Let U = [u1, . . . , ur] ∈ Rn×r so that K = UU⊤. Write
ki = Kei = UU⊤ei = Uβ and take an arbitrary v =

∑
i αiui = Uα ∈ V .

Therefore

⟨v, ki⟩ = ⟨Uα,Uβ⟩ =
∑
i,j

αiβj ⟨ui, uj⟩ =
∑
i,j

αiβj = β⊤α

= e⊤i Uα = e⊤i v = vi = Liv.
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Existence of an Inner Product I

Lemma (Lemma 2.6)

Let V = span {k1, . . . , kn} be the space spanned by the columns of a
positive semi-definite matrix K = [k1, . . . , kn] ∈ Rn×n. Then, there exists
and inner product on V satisfying ⟨kj , ki⟩V = Kij .

Proof. For x = Kα and y = Kβ in V , define the inner product as

⟨x, y⟩V = β⊤Kα.

It is easy to show that this is a well-defined: in the sense that for other
representations of x = Kα̃ and y = Kβ̃ we have

β⊤Kα− β̃⊤Kα̃ = (β − β̃)⊤Kα+ β̃⊤K(α− α⊤)

=
[
K⊤(β − β̃)

]⊤
α+ β̃⊤K(α− α̃) = 0
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Existence of an Inner Product II

That is, no matter the representation; the inner product is

⟨x, y⟩V = β⊤Kα.

It is not difficult to show that this is really an inner product: liearity in the
first argument is clear; for the positive definiteness (of the inner product),
we calculate

⟨x, x⟩V = ⟨Kα,Kα⟩V = α⊤Kα = 0,

since K is positive semi-definite, which implies that Kα = 0.
Note. This is stated as Lemma 2.5:
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Uniqueness of the Inner Product Space

Lemma (Lemma 2.6)

Let V1 ⊂ Rn and V2 ⊂ Rn be two inner product spaces having the same
kernel K. Then, V1 and V2 are identical spaces: V1 = V2 and their inner
products are the same (as above).

Proof. Since the columns of K span both V1 and V2, then V = V1 = V2.
Since the inner products on V1 and V2 are uniquely determined from the
Gram matrix Kij = ⟨kj , ki⟩V corresponding to k1, . . . , kn, and both V1

and V2 have the same matrix, their inner products are identical and further
for any u = Kα and v = Kβ

⟨u, v⟩V = β⊤Kα.
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Extrinsic versus Intrinsic

In applications, knowing V ⊂ Rn allows us working with V using the
extrinsic coordinates by writing an element of V as a vector in Rn.

Note that if V and W are two r-dimensional linear subspaces of Rn,
then their intrinsic geometry is the same, but their extrinsic geometry
may differ unless V = W .

Example (The Problem at Hand)

Endow V ⊂ Rn with an inner product. Fix i ∈ {1, . . . , n} and consider
how to find x ∈ V satisfying

f(x) = e⊤i x = 1

and having the smallest norm (induced by the inner product in V ).
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The Problem — Interpolation

In other words, we wish to solve

Example (The Problem at Hand)

minimise
x∈V

∥x∥2V = ⟨x, x⟩V

subject to f(x) = e⊤i x = 1

The nature of the problem is better understood when the extrinsic
coordinates in Rn are considered, whether or not V = Rn.
Geometrically, such a solution x ∈ V must be orthogonal to any vector
v ∈ V satisfying

f(v) = e⊤i v = 0;

otherwise, its norm could be decreased! That is,

⟨x, v⟩V = 0, for all v ∈ V subject to e⊤i v = 0.
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The Problem — Exercise

Exercise

Take V =
{
x ∈ R3 : x1 + x2 = 1, x3 ∈ R

}
⊂ R3 and i = 1 (or, i = 2, 3)

fixed, to visualise the problem (using the standard inner product in Rn).
Then, solve the resulting problem.

Particularly, show a special attention to those vectors v ∈ V which are
perpendicular (respectively, not perpendicular) to the solution vector
x ∈ V ; namely, ⟨x, v⟩V = 0 (respectively, ⟨x, v⟩V ̸= 0).
In an attempt to solve the problem, you might need a basis for V ; take
any (suitable one)!
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The Problem — Solution using Kernel I

Assume that we know the kernel K = [k1, . . . , kn] of the subspace
V ⊂ Rn. Then, let x = Kα and v = Kβ.
Then for the first constraint,

e⊤i x = 1 =⇒ 1 = e⊤i Kα = k⊤i α

and, for the second constraint, with v = Kβ,

⟨x, v⟩V = 0 whenever e⊤i v = 0 =⇒ ⟨Kα,Kβ⟩V = β⊤Kα = 0,

whenever
0 = e⊤i Kβ = k⊤i β = β⊤ki = β⊤Kei.

That is, the constraints turns to

k⊤i α = 1 (first)

β⊤Kα = 0 whenever β⊤Kei = 0. (second)
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The Problem — Solution using Kernel II

The second constraint is satisfied when

α = cei, c ∈ R.

Hence by the first constraint, we get

1 = k⊤i cei = cKii =⇒ c = 1
Kii

.

Therefore,
x = Kα = Kcei = cki =

1
Kii

ki.

Also note that

∥x∥2V = ⟨x, x⟩V = 1
K2

ii
⟨ki, ki⟩V = 1

Kii

is the minimum norm of such a solution x ∈ V .
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Yet, Towards Another Definition of the Kernel

In the above example problem, as V changes, both the kernel K and
the solution x ∈ V change. Yet, the relationship between x and K
remains the same:

x = 1
Kii

ki.

There is a geometric explanation for the columns of K solving the
single-point interpolation problem: let Li : v 7→ e⊤i v denote the ith
coordinate function. Then,

Li(v) = ⟨v, ki⟩V

means that ki is the gradient of Li. In particular, the line determined
by ki meets the level set {v : Li(v) = 1} at right angles, showing that
ki meets the orthogonality condition for optimality.
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Geometric Definition of the Kernel

Definition (Lemma 2.8 — Geometric Interpretation)

Let Hi =
{
z ∈ Rn : f(z) = e⊤i z = 1

}
be the hyperplane consisting of all

vectors whose ith coordinate is unity.

If V ∩Hi is empty then define ki = 0;

Otherwise, let k̃i be the point in the intersection V ∩Hi that is closest

to the origin. Define ki to be ki = c2k̃i, where c2 =
〈
k̃i, k̃i

〉−1

V
.

Proof. Let v ∈ V such that a = e⊤i v = vi; define w = v − ak̃i ∈ V . Then
for ki = c2k̃i, we must have

a = vi = ⟨v, ki⟩V =
〈
w + ak̃i, c

2k̃i

〉
V

= c2
〈
w, k̃i

〉
V
+ ac2

〈
k̃i, k̃i

〉
V
= ac2

〈
k̃i, k̃i

〉
V
= a.

The choice of c2 guarantees in particular: ⟨ki, ki⟩V = Kii.
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Visualising Geometric Definition of the Kernel
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Visualising Columns of the Kernel
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Visualising the Kernel of 1D subspace
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Visualising Convergence to 1D subspace
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