Orthogonal Projections
 Vectors and Matrices

Ömür Uğur

Institute of Applied Mathematics
Middle East Technical University
RKHS (Learning) Seminars, March 2024

Table of Contents

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
(4) Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Continue with ...

(1) Introduction

(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(3) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(3) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Aims of this Talk

In fact, this is just a preliminary talk focusing on orthogonal projections using vectors and matrices.
However, we will also describe the least-squares problem in regression and try solving it in connection with orthogonal projection.

Yes or No

In order to achieve this we will

- not go in to details
- not prove (almost any) theorems, unless we will benefit from it later
- define some useful notations and notions
- define factorisation of positive (semi-) definite matrices

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
4) Orthonormal Basis
(3) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(a) Singular Value Decomposition
(10) Matrices over Complex Field

Basic Notations and Definitions

- let $x, y \in \mathbb{R}^{n}$ be vectors
- define $\langle x, y\rangle=y^{\top} x=\sum_{i=1}^{n} y_{i} x_{i}$, and recall $\|x\|^{2}=\langle x, x\rangle$
- define $\langle x, y\rangle=\|x\|\|y\| \cos \theta$
- $\langle x, y\rangle=0$ then $\cos \theta=0$ for $x, y \neq 0$; we say x and y are orthogonal and write $x \perp y$
- for a linear subspace $S \subset \mathbb{R}^{n}$ we call $x \in \mathbb{R}^{n}$ orthogonal to S if $x \perp z$ for all $z \in S$; and write it as $x \perp S$

Orthogonal Complement

Definition

The orthogonal complement of a linear subspace $S \subset \mathbb{R}^{n}$ is the set

$$
S^{\perp}=\left\{x \in \mathbb{R}^{n}: x \perp S\right\}
$$

Lemma (Orthogonal Complement)

S^{\perp} is a linear subspace of \mathbb{R}^{n}

Proof.

Let $x, y \in S^{\perp}$ and $\alpha, \beta \in \mathbb{R}$, then for any $z \in S$ we have

$$
\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle=0 .
$$

Hence $\alpha x+\beta y \in S^{\perp}$

Orthogonal Sets

Definition (Orthogonal-Orthonormal Sets)

A set of vectors, $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$, is called an orthogonal set if, $x_{i} \perp x_{j}$ whenever $i \neq j$; it is called an orthonormal set if, in addition to orthogonallity, we have $\left\|x_{i}\right\|=1$ for all i.

Pythagorean

Theorem (Pythagorean)

If $\left\{x_{1}, \ldots, x_{k}\right\}$ is an orthogonal set, then

$$
\left\|x_{1}+\cdots+x_{k}\right\|^{2}=\left\|x_{1}\right\|^{2}+\cdots+\left\|x_{k}\right\|^{2}
$$

Proof.

Particularly for $k=2$, and $x_{1} \perp x_{2}$, we have

$$
\left\|x_{1}+x_{2}\right\|^{2}=\left\langle x_{1}+x_{2}, x_{1}+x_{2}\right\rangle=\left\langle x_{1}, x_{1}\right\rangle+2\left\langle x_{1}, x_{2}\right\rangle+\left\langle x_{2}, x_{2}\right\rangle
$$

Hence, $\left\|x_{1}+x_{2}\right\|^{2}=\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}$.

Linear Independence

If $X \subset \mathbb{R}^{n}$ is an orthogonal and $0 \notin X$, then X is linearly independent.

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
(4) Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(a) Singular Value Decomposition
(10) Matrices over Complex Field

Orthogonal Projection

Theorem (Orthogonal Projection)

Let $x \in \mathbb{R}^{n}$ and $S \subset \mathbb{R}^{n}$ be a linear subspace, there exists a unique solution to the minimisation problem

$$
\hat{x}=\underset{z \in S}{\arg \min }\|x-z\| .
$$

The minimiser \hat{x} is the unique vector in \mathbb{R}^{n} that satisfies

$$
\hat{x} \in S \quad \text { and } \quad x-\hat{x} \perp S .
$$

The vector \hat{x} is called the orthogonal projection of x onto S.

Proof of Orthogonal Projection

The proof here contains only the sufficiency.

Proof of Orthogonal Projection Theorem.

Let $x \in \mathbb{R}^{n}$ and $S \subset \mathbb{R}^{n}$ be a linear subspace. Let $\hat{x} \in S$ such that $x-\hat{x} \perp S$. Let $z \in S$ be any (other) vector in S, then by the Pythagorean theorem, we have

$$
\|x-z\|^{2}=\|(x-\hat{x})+(\hat{x}-z)\|^{2}=\|x-\hat{x}\|^{2}+\|\hat{x}-z\|^{2}
$$

Hence, $\|x-z\| \geq\|x-\hat{x}\|$ for all $z \in S$.
What $\hat{x} \in S$ best approximates a given $x \in \mathbb{R}^{n}$?

Projection as a Mapping

By the Orthogonal Projection Theorem, there is a well-defined mapping (or operator from \mathbb{R}^{n} to \mathbb{R}^{n})

$$
x \in \mathbb{R}^{n} \mapsto \text { its orthogonal projection } \hat{x} \in S \subset \mathbb{R}^{n} .
$$

We denote this operator by P and let $\hat{x}=P x$ and call it orthogonal projection operator. Some uses the notation, $\hat{E}_{S} x=P x$, where \hat{E}_{S} is called wide-sense expectation operator.
Thus from the Orthogonal Projection Theorem, we have

- $P x \in S$ and $x-P x \perp S$
- $\|x\|^{2}=\|P x\|^{2}+\|x-P x\|^{2}$
- $\|P x\| \leq\|x\|$

The second item above simply follows from writing

$$
x=\underbrace{P x}_{\in S}+\underbrace{x-P x}_{\in S^{\perp}}
$$

and applying Pythagorean theorem.

Orthogonal Complement

Let X be a linear subspace with linear subspace S and its complement S^{\perp}; we write

$$
X=S \oplus S^{\perp}
$$

to indicate that for every $x \in X$, there is a unique $x_{1} \in S$ and a unique $x_{2} \in S^{\perp}$ such that

$$
x=x_{1}+x_{2} .
$$

Moreover,

$$
x_{1}=\hat{E}_{S} x \quad \text { and } \quad x_{2}=x-\hat{E}_{S^{\perp}} x
$$

Theorem (Another Version of Orthogonal Projection)
If S is a linear subspace of $\mathbb{R}^{n}, \hat{E}_{S} x=P x$ and $\hat{E}_{S \perp} x=M x$, then for any $x \in \mathbb{R}^{n}$

$$
P x \perp M x \quad \text { and } \quad x=P x+M x .
$$

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
(4) Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(a) Singular Value Decomposition
(10) Matrices over Complex Field

Orthonormal Basis

Recall that an orthogonal set of vectors $\mathcal{O} \subset \mathbb{R}^{n}$ is called an orthonormal set if $\|u\|=1$ for all $u \in \mathcal{O}$.

Definition (Orthogonal Basis)

Let S be a linear subspace of \mathbb{R}^{n} and $\mathcal{O} \subset S$; if \mathcal{O} is orthonormal and $\operatorname{span} \mathcal{O}=S$, then \mathcal{O} is called an orthonormal basis for S.

Recall that \mathcal{O} is necessarily a basis, since the vectors in an orthogonal set are linearly independent.

Orthonormal Basis

Lemma

If $\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthonormal basis for a linear subspace S, then for any $x \in S$,

$$
x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}
$$

Proof.

Since $x \in \operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$, there are α_{j} such that $x=\sum_{j=1}^{k} \alpha_{j} u_{j}$. Therefore,

$$
\left\langle x, u_{i}\right\rangle=\sum_{j=1}^{k} \alpha_{j}\left\langle u_{j}, u_{i}\right\rangle=\alpha_{i}
$$

due the orthogonality that $\left\langle u_{j}, u_{i}\right\rangle=\delta_{i j}$.

Projection onto Orthonormal Basis

Theorem (Projection)

If $\mathcal{O}=\left\{u_{1}, \ldots, u_{k}\right\}$ is an orthonormal basis for a linear subspace S, then for any $x \in \mathbb{R}^{n}$,

$$
P x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}
$$

Proof.

Consider $P x$ above; clearly, $P x \in S$ and for any $u_{j} \in \mathcal{O}$,

$$
\begin{aligned}
\left\langle x-\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}, u_{j}\right\rangle & =\left\langle x, u_{j}\right\rangle-\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle\left\langle u_{i}, u_{j}\right\rangle \\
& =\left\langle x, u_{j}\right\rangle-\left\langle x, u_{j}\right\rangle=0
\end{aligned}
$$

Hence, $x-P x \perp S$.

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Projection using Matrices

We have already mentioned that the projection can be considered a linear mapping from $x \in \mathbb{R}^{n}$ to $P x \in \mathbb{R}^{n}$.

Theorem (Projection Matrix)

Let the columns of an $n \times k$ matrix X form a basis for S. Then,

$$
P=X\left(X^{\top} X\right)^{-1} X^{\top}
$$

is a projection (matrix) onto S.
Remark. The matrix $M=I-P$ satisfies $M x=\hat{E}_{S^{\perp}} x$ and it is sometimes called an annihilator matrix.

Proof of Projection Matrix

Proof of Projection Matrix.

Let $x \in \mathbb{R}^{n}$ and $P=X\left(X^{\top} X\right)^{-1} X^{\top}$.

- $P x=X \underbrace{\left(X^{\top} X\right)^{-1} X^{\top} x}_{a}=X a$, hence $P x \in S$.
- Notice that for any $y \in \mathbb{R}^{k}$, we have $z=X y \in S$ and using $\langle x-P x, z\rangle=z^{\top}(x-P x)$, we calculate

$$
\begin{aligned}
\underbrace{(X y)^{\top}}_{z^{\top}} \underbrace{\left[x-X\left(X^{\top} X\right)^{-1} X^{\top} x\right]}_{x-P x} & =y^{\top}[X^{\top} x-\underbrace{X^{\top} X\left(X^{\top} X\right)^{-1}}_{I_{k}} X^{\top} x] \\
& =0 .
\end{aligned}
$$

So, $x-P x \perp S$.
Hence, the proof is completed.

Corollary for Orthonormal Case

Theorem (Corollary for Orthonormal Case)

Suppose U is an $n \times k$ matrix with orthonormal columns; let $u_{i}=\operatorname{col}_{i} U$ and let $S=\operatorname{span} U=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$. Then,

$$
P=U U^{\top} \quad \text { and } \quad P x=U U^{\top} x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}
$$

Proof. Since the columns of U are orthonormal, it satisfies $U^{\top} U=I_{k}$; thence,

$$
P=U\left(U^{\top} U\right)^{-1} U^{\top}=U U^{\top}
$$

The final part of the theorem, that is, $P x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}$, directly follows from the Projection Theorem (above); to recall and check:

$$
\alpha_{i}=\left\langle P x, u_{i}\right\rangle=u_{i}^{\top} U U^{\top} x=u_{i}^{\top} x=\left\langle x, u_{i}\right\rangle .
$$

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
(4) Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(a) Singular Value Decomposition
(10) Matrices over Complex Field

Over-determined Systems

- Let $y \in \mathbb{R}^{n}$ and X be an $n \times k$ matrix with linearly independent columns; we seek a vector (of unknowns) $b \in \mathbb{R}^{k}$ satisfying $X b=y$.
- If $n>k$ (i.e., more equations than unknowns) then b (or the system) is to be over-determined.
- And, in general, we seek for an approximate solution: $b \in \mathbb{R}^{k}$ such that $X b$ is close to y. Such a solution is well-defined and unique.

Theorem

The unique minimiser of $\|y-X b\|$ over $b \in \mathbb{R}^{k}$ is $\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y$.
Proof. Note that $X \hat{\beta}=X\left(X^{\top} X\right)^{-1} X^{\top} y=P y$, that is, $P y$ is an orthogonal projection onto span X; thence,

$$
\|y-P y\| \leq\|y-z\| \quad \text { for all } z \in \operatorname{span} X
$$

Particularly, since $X b \in \operatorname{span} X$ and $P y=X \hat{\beta}$,

$$
\|y-X \hat{\beta}\| \leq\|y-X b\| \quad \text { for all } b \in \mathbb{R}^{k}
$$

Least-Squares Regression

Given the pairs $(x, y) \in \mathbb{R}^{k} \times \mathbb{R}$, and let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ in order to minimise the risk (loss)

$$
\mathcal{R}(f)=\mathbb{E}\left[(y-f(x))^{2}\right] .
$$

- Unless the underlying probability or the expectation is given, we cannot solve the problem!
- However, if a sample of size n is provided, we can estimate the risk: empirical risk:

$$
\underset{f \in \mathcal{F}}{\operatorname{minimise}} \hat{R}(f)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2} .
$$

However, still this includes calculus of variations - generally, \mathcal{F} is called a hypothesis space and is suggested to be simple (to avoid over fitting).

Linear Least-Squares (sample problem)

Let \mathcal{F} be the class of (all) linear functions defined as

$$
\mathcal{F}=\left\{f: f(x)=b^{\top} x, \quad x \in \mathbb{R}^{k}\right\}
$$

Thus the problem is

Definition (Linear Least-Squares)

$$
\underset{b \in \mathbb{R}^{k}}{\operatorname{minimise}} \hat{R}(f)=\sum_{i=1}^{n}\left(y_{i}-b^{\top} x_{i}\right)^{2}
$$

Define: $y=\left[y_{1}, \ldots, y_{n}\right]^{\top}, x_{i}=\left[x_{i 1}, \ldots, x_{i k}\right]^{\top}$ and

$$
X=\left[\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{n}^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 k} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n k}
\end{array}\right]
$$

We assume that $n>k$ and X has a full column rank.

Linear Least-Squares as Projection Problem

With the notations introduced, an easy algebra shows that

$$
\|y-X b\|^{2}=\sum_{i=1}^{n}\left(y_{i}-b^{\top} x_{i}\right)^{2}
$$

and since a monotone transformation does not effect the minimisers, the least-squares problem turns into

$$
\underset{b \in \mathbb{R}^{k}}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-b^{\top} x_{i}\right)^{2}=\underset{b \in \mathbb{R}^{k}}{\arg \min }\|y-X b\| .
$$

Thence, the solution (by the over-determined system results):

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

Linear Least-Squares as Projection Problem

- let P and M be the projection and annihilator associated with X :

$$
P=X\left(X^{\top} X\right)^{-1} X^{\top} \quad \text { and } \quad M=I-P
$$

- The vector of fitted values is $\hat{y}=X \hat{\beta}=P y$
- The vector of residuals is $\hat{r}=y-\hat{y}=y-P y=M y$

Here are some standard definitions (and a theorem):

- TSS $=\|y\|^{2}$ (total sum of squares)
- $\mathrm{SSR}=\mathrm{RSS}=\|r\|^{2}$ (sum of squared residuals)
- $\mathrm{ESS}=\|\hat{y}\|^{2}$ (explained sum of squares)

Theorem (TSS = ESS + SSR)

$$
T S S=E S S+S S R
$$

Proof. $y=\hat{y}+\hat{r}$ and $\hat{r} \perp \hat{y}$, then by Pythagorean theorem

$$
\|y\|^{2}=\|\hat{y}+\hat{r}\|^{2}=\|\hat{y}\|^{2}+\|\hat{r}\|^{2}
$$

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Gram-Schmidt Orthogonalisation

Theorem (Orthonormal Basis)

For linearly independent set $\left\{x_{1}, \ldots, x_{k}\right\} \subset \mathbb{R}^{n}$, there is an orthonormal set $\left\{u_{1}, \ldots, u_{k}\right\} \subset \mathbb{R}^{n}$ with

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{i}\right\}=\operatorname{span}\left\{u_{1}, \ldots, u_{i}\right\}, \quad i=1, \ldots, k .
$$

Gram-Schmidt Orthogonalisation

Gram-Schmidt Orthogonalisation Procedure

(1) for $i=1, \ldots, k$ form $S_{i}=\operatorname{span}\left\{x_{1}, \ldots, x_{i}\right\}$ and S_{i}^{\perp}
(2) set $v_{1}=x_{1}$
(3) for $i \geq 2$, set $v_{i}=\hat{E}_{S_{i-1}^{\perp}} x_{i}$ and $u_{i}=\frac{v_{i}}{\left\|v_{i}\right\|}$

Equivalently, as commonly appears: set $v_{1}=x_{1}$, then for $i=2, \ldots, k$,

$$
v_{i}=x_{i}-\sum_{j=1}^{i-1} \operatorname{proj}_{v_{j}} x_{i}
$$

where

$$
\operatorname{proj}_{v} x=\frac{\langle x, v\rangle}{\langle v, v\rangle} v,
$$

and consequently,

$$
u_{i}=\frac{v_{i}}{\left\|v_{i}\right\|} .
$$

QR Decomposition

Theorem (QR Decomposition)

If X is an $n \times k$ matrix with linearly independent columns, then there exists a factorisation of the form $X=Q R$ where

- R is $k \times k$, upper triangular and nonsingular;
- Q is $n \times k$ with orthonormal columns.

Proof (sketch only). Let $x_{j}=\operatorname{col}_{j} X$, and let $\left\{u_{1}, \ldots, u_{k}\right\}$ be the orthonormal set with the same span of $\left\{x_{1}, \ldots, x_{k}\right\}$, by Gram-Schmidt process (for instance).
Let $Q=\left[u_{1}, \ldots, u_{k}\right]$ be the matrix with columns u_{i}. Then, since $x_{j} \in \operatorname{span}\left\{u_{1}, \ldots, u_{j}\right\}$, we have $j=1, \ldots, k$:

$$
x_{j}=\sum_{i=1}^{j}\left\langle x_{j}, u_{i}\right\rangle u_{i}, \quad \text { equivalently } \quad X=Q R
$$

Linear Regression with QR Decomposition

We have seen that the over-determined system, $X b=y$, has the least-squares approximation as

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

Using this and the decomposition $X=Q R$, we get

$$
\begin{aligned}
\hat{\beta} & =\left(R^{\top} Q^{\top} Q R\right)^{-1} R^{\top} Q^{\top} y=\left(R^{\top} R\right)^{-1} R^{\top} Q^{\top} y \\
& =R^{-1} R^{-\top} R^{\top} Q^{\top} y \\
& =R^{-1} Q^{\top} y
\end{aligned}
$$

Hence, the solution blows down to back-substitution in

$$
R \hat{\beta}=Q^{\top} y
$$

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(8) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Positive Definite Matrices

Definition (Positive Definite Matrices)

A matrix A is positive definite if

$$
\langle A x, x\rangle=x^{\top} A x>0
$$

for all nonzero x.
A positive definite matrix

- has real and positive eigenvalues,
- its leading principal submatrices all have positive determinants
- has positive diagonal elements.

Cholesky Decomposition

Theorem (Cholesky Decomposition)

A Cholesky decomposition,

$$
A=U U^{\top}
$$

of A, where U is an upper triangular matrix, exists if, and only if, A is symmetric and positive definite.

Definition (Square Root Decomposition)

A square root of a matrix A is defined as a matrix S such that

$$
S^{2}=S S=A
$$

Generaly, we use the notation $A^{1 / 2}$ instead of S.

Eigendecomposition - Spectral Decomposition

Theorem (Spectral Decomposition)

Let A be an $n \times n$ matrix with n linearly independent eigenvectors, say u_{i} corresponding to λ_{i}. Then A has the spectral decomposition,

$$
A=U \Lambda U^{-1}
$$

where U is the square $n \times n$ matrix whose i th column is the eigenvector u_{i} of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues $\lambda_{i}: U=\left[u_{1}, \ldots, u_{n}\right]$ and $\Lambda_{i i}=\lambda_{i}$. In most cases, the normalised eigenvectors u_{i} are chosen, but this is not necessary.

Square Root of an SPD Matrix

Hence, as a corollary, for a symmetric positive definite matrix A, we have the eigendecompostion as

$$
A=U \Lambda U^{\top}
$$

where, in this case, U is an orthogonal matrix whose columns are the orthonormalised eigenvectors of A. In other words, we can choose an orthonormal set of eigenvectors u_{i}. Such a statement needs a proof though!
Hence, for such a symmetric positive definite matrix A, we have

$$
A=U \Lambda U^{\top}=\left(U \Lambda^{1 / 2} U^{\top}\right)\left(U \Lambda^{1 / 2} U^{\top}\right)=S S
$$

so that

$$
A^{1 / 2}=U \Lambda^{1 / 2} U^{\top}
$$

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(9) Singular Value Decomposition
(10) Matrices over Complex Field

Singular Value Decomposition

Definition

An $m \times n$ matrix A has (always) a singular value decomposition of the form

$$
A=U \Sigma V^{\top}
$$

where $U(m \times m)$ and $V(n \times n)$ are orthogonal (respectively, the left and right singular vector) matrices and Σ is a diagonal one, containing the (non-negative) singular values.

Singular Value Decomposition

Particularly,

- if $m \geq n$, then

$$
A=U\left[\begin{array}{c}
\Sigma \\
0
\end{array}\right] V^{\top}, \quad \Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]
$$

with $\sigma_{1} \geq \cdots \geq \sigma_{n} \geq 0$.

- if $m \leq n$, then

$$
A=U\left[\begin{array}{ll}
\Sigma & 0
\end{array}\right] V^{\top}, \quad \Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{m}
\end{array}\right]
$$

with $\sigma_{1} \geq \cdots \geq \sigma_{m} \geq 0$.

Singular Value Decomposition - Consequences

Apart from many properties, it is important to recall the following three; Let $A=U \Sigma V^{\top}$ with $U=\left[u_{1}, \ldots, u_{p}\right], V=\left[v_{1}, \ldots v_{p}\right]$ and $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \ldots, \sigma_{p}\right\}$, where $p=\min \{m, n\}$ and $\sigma_{1} \geq \cdots \geq \sigma_{p} \geq 0$.

- For such an A, the singular vectors satisfy

$$
A v_{i}=\sigma_{i} u_{i}, \quad A^{\top} u_{i}=\sigma_{i} v_{i}
$$

equivalently,

$$
A^{\top} A v_{i}=\sigma_{i}^{2} v_{i}, \quad A A^{\top} u_{i}=\sigma_{i}^{2} u_{i}
$$

for $1 \leq i \leq p$.

- If $r=\operatorname{rank} A$, then

$$
A=\sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\top}
$$

- Finally, A is symmetric positive definite (square) matrix if, and only if, its singular value decomposition is $A=V \Sigma V^{\top}$, where Σ is nonsingular.

Continue with ...

(1) Introduction
(2) Basic Notations \& Definitions
(3) Orthogonal Projection
a Orthonormal Basis
(5) Projection using Matrices
(6) Least-Squares Regression
(7) Gram-Schmidt Orthogonalisation
(8) Positive Definite Matrices
(a) Singular Value Decomposition
(10) Matrices over Complex Field

Complex Matrices

When the entries of a matrix are in $\mathbb{C}: z=\alpha+i \beta, \bar{z}=\alpha-i \beta$ and $|z|=\sqrt{\alpha^{2}+\beta^{2}}$, where $i=\sqrt{-1}$, here are the Real vs Complex Correspondence.

- transpose vs conjugate (Hermitian) transpose

$$
A^{\top} \quad \text { versus } A^{*}=A^{\mathrm{H}}=\overline{A^{\top}}
$$

- symmetric vs Hermitian

$$
A^{\top}=A \quad \text { versus } \quad A^{\mathrm{H}}=A
$$

In this case, we call A, sometimes, self-adjoint.

- orthogonal vs unitary

$$
A^{\top} A=A A^{\top}=I \quad \text { versus } \quad A^{\mathrm{H}} A=A A^{\mathrm{H}}=I
$$

That is, when the inverse $A^{-1}=A^{\mathrm{H}}$.

Bibliography

围 Jonathan H．Manton and Pierre－Olivier Amblard． A primer on reproducing kernel Hilbert spaces， 2015.

國 II Shan Ng．
Reproducing kernel Hilbert spaces \＆machine learning， 2024.
accessed：March 2024.
國 Vern I．Paulsen and Mrinal Raghupathi．
An Introduction to the Theory of Reproducing Kernel Hilbert Spaces．
Cambridge Studies in Advanced Mathematics．Cambridge University Press， 2016.

围 Jesse Perla，Thomas J．Sargent，and John Stachurski． Orthogonal projections and their applications， 2024.
accessed：March 2024.

