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Aims of this Talk

In fact, this is just a preliminary talk focusing on orthogonal projections
using vectors and matrices.
However, we will also describe the least-squares problem in regression and
try solving it in connection with orthogonal projection.

Yes or No

In order to achieve this we will

not go in to details

not prove (almost any) theorems, unless we will benefit from it later

define some useful notations and notions

define factorisation of positive (semi-) definite matrices
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Basic Notations and Definitions

let x, y ∈ Rn be vectors

define ⟨x, y⟩ = y⊤x =
∑n

i=1 yixi, and recall ∥x∥2 = ⟨x, x⟩
define ⟨x, y⟩ = ∥x∥ ∥y∥ cos θ
⟨x, y⟩ = 0 then cos θ = 0 for x, y ̸= 0; we say x and y are orthogonal
and write x ⊥ y

for a linear subspace S ⊂ Rn we call x ∈ Rn orthogonal to S if x ⊥ z
for all z ∈ S; and write it as x ⊥ S
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Orthogonal Complement

Definition

The orthogonal complement of a linear subspace S ⊂ Rn is the set

S⊥ = {x ∈ Rn : x ⊥ S}

Lemma (Orthogonal Complement)

S⊥ is a linear subspace of Rn

Proof.

Let x, y ∈ S⊥ and α, β ∈ R, then for any z ∈ S we have

⟨αx+ βy, z⟩ = α ⟨x, z⟩ + β ⟨y, z⟩ = 0.

Hence αx+ βy ∈ S⊥
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Orthogonal Sets

Definition (Orthogonal–Orthonormal Sets)

A set of vectors, {x1, . . . , xk} ⊂ Rn, is called an orthogonal set if, xi ⊥ xj
whenever i ̸= j; it is called an orthonormal set if, in addition to
orthogonallity, we have ∥xi∥ = 1 for all i.
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Pythagorean

Theorem (Pythagorean)

If {x1, . . . , xk} is an orthogonal set, then

∥x1 + · · ·+ xk∥2 = ∥x1∥2 + · · ·+ ∥xk∥2 .

Proof.

Particularly for k = 2, and x1 ⊥ x2, we have

∥x1 + x2∥2 = ⟨x1 + x2, x1 + x2⟩ = ⟨x1, x1⟩ + 2 ⟨x1, x2⟩ + ⟨x2, x2⟩

Hence, ∥x1 + x2∥2 = ∥x1∥2 + ∥x2∥2.

Linear Independence

If X ⊂ Rn is an orthogonal and 0 ̸∈ X, then X is linearly independent.
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Orthogonal Projection

Theorem (Orthogonal Projection)

Let x ∈ Rn and S ⊂ Rn be a linear subspace, there exists a unique
solution to the minimisation problem

x̂ = argmin
z∈S

∥x− z∥ .

The minimiser x̂ is the unique vector in Rn that satisfies

x̂ ∈ S and x− x̂ ⊥ S.

The vector x̂ is called the orthogonal projection of x onto S.

Ömür Uğur (IAM / METU) Projections RKHS Seminars 11 / 45



RKHS

Proof of Orthogonal Projection

The proof here contains only the sufficiency.

Proof of Orthogonal Projection Theorem.

Let x ∈ Rn and S ⊂ Rn be a linear subspace. Let x̂ ∈ S such that
x− x̂ ⊥ S. Let z ∈ S be any (other) vector in S, then by the Pythagorean
theorem, we have

∥x− z∥2 = ∥(x− x̂) + (x̂− z)∥2 = ∥x− x̂∥2 + ∥x̂− z∥2

Hence, ∥x− z∥ ≥ ∥x− x̂∥ for all z ∈ S.

What x̂ ∈ S best approximates a given x ∈ Rn?
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Projection as a Mapping

By the Orthogonal Projection Theorem, there is a well-defined mapping
(or operator from Rn to Rn)

x ∈ Rn 7→ its orthogonal projection x̂ ∈ S ⊂ Rn.

We denote this operator by P and let x̂ = Px and call it orthogonal
projection operator. Some uses the notation, ÊSx = Px, where ÊS is
called wide-sense expectation operator.
Thus from the Orthogonal Projection Theorem, we have

Px ∈ S and x− Px ⊥ S

∥x∥2 = ∥Px∥2 + ∥x− Px∥2

∥Px∥ ≤ ∥x∥
The second item above simply follows from writing

x = Px︸︷︷︸
∈S

+x− Px︸ ︷︷ ︸
∈S⊥

,

and applying Pythagorean theorem.
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Orthogonal Complement

Let X be a linear subspace with linear subspace S and its complement
S⊥; we write

X = S ⊕ S⊥

to indicate that for every x ∈ X, there is a unique x1 ∈ S and a unique
x2 ∈ S⊥ such that

x = x1 + x2.

Moreover,
x1 = ÊSx and x2 = x− ÊS⊥x.

Theorem (Another Version of Orthogonal Projection)

If S is a linear subspace of Rn, ÊSx = Px and ÊS⊥x = Mx, then for any
x ∈ Rn

Px ⊥ Mx and x = Px+Mx.
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Orthonormal Basis

Recall that an orthogonal set of vectors O ⊂ Rn is called an orthonormal
set if ∥u∥ = 1 for all u ∈ O.

Definition (Orthogonal Basis)

Let S be a linear subspace of Rn and O ⊂ S; if O is orthonormal and
spanO = S, then O is called an orthonormal basis for S.

Recall that O is necessarily a basis, since the vectors in an orthogonal set
are linearly independent.
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Orthonormal Basis

Lemma

If {u1, . . . , uk} is an orthonormal basis for a linear subspace S, then for
any x ∈ S,

x =

k∑
i=1

⟨x, ui⟩ ui.

Proof.

Since x ∈ span {u1, . . . , uk}, there are αj such that x =
∑k

j=1 αjuj .
Therefore,

⟨x, ui⟩ =
k∑

j=1

αj ⟨uj , ui⟩ = αi,

due the orthogonality that ⟨uj , ui⟩ = δij .
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Projection onto Orthonormal Basis

Theorem (Projection)

If O = {u1, . . . , uk} is an orthonormal basis for a linear subspace S, then
for any x ∈ Rn,

Px =

k∑
i=1

⟨x, ui⟩ ui.

Proof.

Consider Px above; clearly, Px ∈ S and for any uj ∈ O,〈
x−

k∑
i=1

⟨x, ui⟩ ui, uj

〉
= ⟨x, uj⟩ −

k∑
i=1

⟨x, ui⟩ ⟨ui, uj⟩

= ⟨x, uj⟩ − ⟨x, uj⟩ = 0.

Hence, x− Px ⊥ S.
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Projection using Matrices

We have already mentioned that the projection can be considered a linear
mapping from x ∈ Rn to Px ∈ Rn.

Theorem (Projection Matrix)

Let the columns of an n× k matrix X form a basis for S. Then,

P = X(X⊤X)−1X⊤

is a projection (matrix) onto S.

Remark. The matrix M = I − P satisfies Mx = ÊS⊥x and it is
sometimes called an annihilator matrix.
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Proof of Projection Matrix

Proof of Projection Matrix.

Let x ∈ Rn and P = X(X⊤X)−1X⊤.

Px = X (X⊤X)−1X⊤x︸ ︷︷ ︸
a

= Xa, hence Px ∈ S.

Notice that for any y ∈ Rk, we have z = Xy ∈ S and using
⟨x− Px, z⟩ = z⊤(x− Px), we calculate

(Xy)⊤︸ ︷︷ ︸
z⊤

[
x−X(X⊤X)−1X⊤x

]︸ ︷︷ ︸
x−Px

= y⊤

X⊤x−X⊤X(X⊤X)−1︸ ︷︷ ︸
Ik

X⊤x


= 0.

So, x− Px ⊥ S.

Hence, the proof is completed.
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Corollary for Orthonormal Case

Theorem (Corollary for Orthonormal Case)

Suppose U is an n× k matrix with orthonormal columns; let ui = coliU
and let S = spanU = span {u1, . . . , uk}. Then,

P = UU⊤ and Px = UU⊤x =

k∑
i=1

⟨x, ui⟩ ui.

Proof. Since the columns of U are orthonormal, it satisfies U⊤U = Ik;
thence,

P = U(U⊤U)−1U⊤ = UU⊤.

The final part of the theorem, that is, Px =
∑k

i=1 ⟨x, ui⟩ ui, directly
follows from the Projection Theorem (above); to recall and check:

αi = ⟨Px, ui⟩ = u⊤i UU⊤x = u⊤i x = ⟨x, ui⟩ .
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Over-determined Systems

Let y ∈ Rn and X be an n× k matrix with linearly independent
columns; we seek a vector (of unknowns) b ∈ Rk satisfying Xb = y.
If n > k (i.e., more equations than unknowns) then b (or the system)
is to be over-determined.
And, in general, we seek for an approximate solution: b ∈ Rk such
that Xb is close to y. Such a solution is well-defined and unique.

Theorem

The unique minimiser of ∥y −Xb∥ over b ∈ Rk is β̂ = (X⊤X)−1X⊤y.

Proof. Note that Xβ̂ = X(X⊤X)−1X⊤y = Py, that is, Py is an
orthogonal projection onto spanX; thence,

∥y − Py∥ ≤ ∥y − z∥ for all z ∈ spanX.

Particularly, since Xb ∈ spanX and Py = Xβ̂,∥∥∥y −Xβ̂
∥∥∥ ≤ ∥y −Xb∥ for all b ∈ Rk.
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Least-Squares Regression

Given the pairs (x, y) ∈ Rk × R, and let f : Rk → R in order to minimise
the risk (loss)

R(f) = E
[
(y − f(x))2

]
.

Unless the underlying probability or the expectation is given, we
cannot solve the problem!

However, if a sample of size n is provided, we can estimate the risk:
empirical risk:

minimise
f∈F

R̂(f) =
1

n

n∑
i=1

(yi − f(xi))
2 .

However, still this includes calculus of variations — generally, F is
called a hypothesis space and is suggested to be simple (to avoid over
fitting).
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Linear Least-Squares (sample problem)

Let F be the class of (all) linear functions defined as

F =
{
f : f(x) = b⊤x, x ∈ Rk

}
.

Thus the problem is

Definition (Linear Least-Squares)

minimise
b∈Rk

R̂(f) =

n∑
i=1

(
yi − b⊤xi

)2
.

Define: y = [y1, . . . , yn]
⊤, xi = [xi1, . . . , xik]

⊤ and

X =

x
⊤
1
...
x⊤n

 =

x11 · · · x1k
...

. . .
...

xn1 · · · xnk

 .

We assume that n > k and X has a full column rank.
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Linear Least-Squares as Projection Problem

With the notations introduced, an easy algebra shows that

∥y −Xb∥2 =
n∑

i=1

(
yi − b⊤xi

)2

and since a monotone transformation does not effect the minimisers, the
least-squares problem turns into

argmin
b∈Rk

n∑
i=1

(
yi − b⊤xi

)2
= argmin

b∈Rk

∥y −Xb∥ .

Thence, the solution (by the over-determined system results):

β̂ = (X⊤X)−1X⊤y.
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Linear Least-Squares as Projection Problem

let P and M be the projection and annihilator associated with X:

P = X(X⊤X)−1X⊤ and M = I − P.

The vector of fitted values is ŷ = Xβ̂ = Py

The vector of residuals is r̂ = y − ŷ = y − Py = My

Here are some standard definitions (and a theorem):

TSS = ∥y∥2 (total sum of squares)

SSR = RSS = ∥r∥2 (sum of squared residuals)

ESS = ∥ŷ∥2 (explained sum of squares)

Theorem (TSS = ESS + SSR)

TSS = ESS+ SSR

Proof. y = ŷ + r̂ and r̂ ⊥ ŷ, then by Pythagorean theorem

∥y∥2 = ∥ŷ + r̂∥2 = ∥ŷ∥2 + ∥r̂∥2 .
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Gram-Schmidt Orthogonalisation

Theorem (Orthonormal Basis)

For linearly independent set {x1, . . . , xk} ⊂ Rn, there is an orthonormal
set {u1, . . . , uk} ⊂ Rn with

span {x1, . . . , xi} = span {u1, . . . , ui}, i = 1, . . . , k.
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Gram-Schmidt Orthogonalisation

Gram-Schmidt Orthogonalisation Procedure

1 for i = 1, . . . , k form Si = span {x1, . . . , xi} and S⊥
i

2 set v1 = x1
3 for i ≥ 2, set vi = ÊS⊥

i−1
xi and ui =

vi
∥vi∥

Equivalently, as commonly appears: set v1 = x1, then for i = 2, . . . , k,

vi = xi −
i−1∑
j=1

projvj xi,

where

projv x =
⟨x, v⟩
⟨v, v⟩

v,

and consequently,

ui =
vi

∥vi∥
.
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QR Decomposition

Theorem (QR Decomposition)

If X is an n× k matrix with linearly independent columns, then there
exists a factorisation of the form X = QR where

R is k × k, upper triangular and nonsingular;

Q is n× k with orthonormal columns.

Proof (sketch only). Let xj = coljX, and let {u1, . . . , uk} be the
orthonormal set with the same span of {x1, . . . , xk}, by Gram-Schmidt
process (for instance).
Let Q = [u1, . . . , uk] be the matrix with columns ui. Then, since
xj ∈ span {u1, . . . , uj}, we have j = 1, . . . , k:

xj =

j∑
i=1

⟨xj , ui⟩ ui, equivalently X = QR.

Ömür Uğur (IAM / METU) Projections RKHS Seminars 32 / 45



RKHS

Linear Regression with QR Decomposition

We have seen that the over-determined system, Xb = y, has the
least-squares approximation as

β̂ = (X⊤X)−1X⊤y.

Using this and the decomposition X = QR, we get

β̂ = (R⊤Q⊤QR)−1R⊤Q⊤y = (R⊤R)−1R⊤Q⊤y

= R−1R−⊤R⊤Q⊤y

= R−1Q⊤y.

Hence, the solution blows down to back-substitution in

Rβ̂ = Q⊤y.
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Positive Definite Matrices

Definition (Positive Definite Matrices)

A matrix A is positive definite if

⟨Ax, x⟩ = x⊤Ax > 0

for all nonzero x.

A positive definite matrix

has real and positive eigenvalues,

its leading principal submatrices all have positive determinants

has positive diagonal elements.
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Cholesky Decomposition

Theorem (Cholesky Decomposition)

A Cholesky decomposition,
A = UU⊤,

of A, where U is an upper triangular matrix, exists if, and only if, A is
symmetric and positive definite.

Definition (Square Root Decomposition)

A square root of a matrix A is defined as a matrix S such that

S2 = SS = A.

Generaly, we use the notation A1/2 instead of S.
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Eigendecomposition – Spectral Decomposition

Theorem (Spectral Decomposition)

Let A be an n× n matrix with n linearly independent eigenvectors, say ui
corresponding to λi. Then A has the spectral decomposition,

A = UΛU−1,

where U is the square n× n matrix whose ith column is the eigenvector ui
of A, and Λ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues λi: U = [u1, . . . , un] and Λii = λi.
In most cases, the normalised eigenvectors ui are chosen, but this is not
necessary.
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Square Root of an SPD Matrix

Hence, as a corollary, for a symmetric positive definite matrix A, we have
the eigendecompostion as

A = UΛU⊤,

where, in this case, U is an orthogonal matrix whose columns are the
orthonormalised eigenvectors of A. In other words, we can choose an
orthonormal set of eigenvectors ui. Such a statement needs a proof
though!
Hence, for such a symmetric positive definite matrix A, we have

A = UΛU⊤ =
(
UΛ1/2U⊤

)(
UΛ1/2U⊤

)
= SS,

so that
A1/2 = UΛ1/2U⊤.
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Singular Value Decomposition

Definition

An m× n matrix A has (always) a singular value decomposition of the
form

A = UΣV ⊤,

where U (m×m) and V (n× n) are orthogonal (respectively, the left and
right singular vector) matrices and Σ is a diagonal one, containing the
(non-negative) singular values.
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Singular Value Decomposition

Particularly,

if m ≥ n, then

A = U

[
Σ
0

]
V ⊤, Σ =

σ1 . . .

σn


with σ1 ≥ · · · ≥ σn ≥ 0.

if m ≤ n, then

A = U
[
Σ 0

]
V ⊤, Σ =

σ1 . . .

σm


with σ1 ≥ · · · ≥ σm ≥ 0.
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Singular Value Decomposition - Consequences

Apart from many properties, it is important to recall the following three;
Let A = UΣV ⊤ with U = [u1, . . . , up], V = [v1, . . . vp] and
Σ = diag{σ1, . . . , σp}, where p = min{m,n} and σ1 ≥ · · · ≥ σp ≥ 0.

For such an A, the singular vectors satisfy

Avi = σiui, A⊤ui = σivi,

equivalently,

A⊤Avi = σ2
i vi, AA⊤ui = σ2

i ui,

for 1 ≤ i ≤ p.

If r = rankA, then

A =

r∑
j=1

σjujv
⊤
j .

Finally, A is symmetric positive definite (square) matrix if, and only if,
its singular value decomposition is A = V ΣV ⊤, where Σ is
nonsingular.
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Complex Matrices

When the entries of a matrix are in C: z = α+ iβ, z = α− iβ and
|z| =

√
α2 + β2, where i =

√
−1, here are the Real vs Complex

Correspondence.

transpose vs conjugate (Hermitian) transpose

A⊤ versus A∗ = AH = A⊤

symmetric vs Hermitian

A⊤ = A versus AH = A

In this case, we call A, sometimes, self-adjoint.

orthogonal vs unitary

A⊤A = AA⊤ = I versus AHA = AAH = I

That is, when the inverse A−1 = AH.
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