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Aims of this Talk

We will be reviewing the basic, but relevant, mathematical tools in order
to take the big picture of applying RKHS in applications.

Yes or No

In order to achieve this we will

not go in to details

not prove (almost any) theorems

define some useful function spaces

try to see the big picture of RKHS
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Function Spaces

Apart from the basic definition of a Vector Space, we will introduce

Normed Space

Banach Space

Inner Product Space

Metric Space

Hilbert Space (and later reproducing kernel)
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Normed Space

Definition (Normed Space)

Let V be a vector space over F. A norm on V is a function

∥·∥V = ∥·∥ : V → R

such that for any two vectors u, v ∈ V and a scalar α ∈ F,
1 ∥u∥ ≥ 0 with ∥u∥ = 0 ⇐⇒ u = 0,

2 ∥αu∥ = |α| ∥u∥, and
3 ∥u+ v∥ ≤ ∥u∥ + ∥v∥.

The vector space V equipped with the norm ∥·∥, sometimes written as
(V, ∥·∥), is called a normed space.
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Banach Space

Definition (Banach Space)

Let V be a normed space equipped with a norm ∥·∥. We say that V is
complete (with respect to the norm ∥·∥) if every Cauchy sequence in V
converges to a vector in V .
A normed space that is complete with respect to its norm is known as a
Banach space.
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Inner Product Space

Definition (Inner Product Space)

Let V be a vector space over F. An (F) inner product on V is a function

⟨·, ·⟩V = ⟨·, ·⟩ : V × V → F

such that for any vectors u, v, w ∈ V and scalars α, β ∈ F, the following
proporties hold:

1 ⟨u, v⟩ = ⟨v, u⟩, (conjugate symmetry)

2 ⟨αu+ βv,w⟩ = α ⟨u,w⟩ + β ⟨v, w⟩, (linearity in the 1st argument)

3 ⟨u, u⟩ ≥ 0 with ⟨u, u⟩ = 0 ⇐⇒ u = 0. (positive semi-definiteness)

The vector space V equipped with the inner product ⟨·, ·⟩, sometimes
written as (V, ⟨·, ·⟩), is called an inner product space.

Ömür Uğur (IAM / METU) RKHS - Big Picture RKHS Seminars 9 / 20



RKHS

Inner Product Space is a Normed Space

Definition (Norm induced by the Inner Product)

Let (V, ⟨·, ·⟩) be an inner product space. For u ∈ V ,

∥u∥ =
√

⟨u, u⟩

is norm on V referred to as the norm induced by the inner product.
With this norm, (V, ∥·∥) is a normed space (as well).
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Metric Space

Definition (Metric Space)

A metric space is a vector space V that is equipped with a distance
function (metric), d : V × V → R satisfying the following:

1 d(u, v) ≥ 0 with d(u, v) = 0 ⇐⇒ u = v,

2 d(u, v) = d(v, u), and (symmetry)

3 d(u, v) ≤ d(u,w) + d(w, v) . (triangular inequality)

for any u, v, w ∈ V .

Distance, Norm, Inner Product

d(u, v) = ∥u− v∥ =
√

⟨u, v⟩

Read the equation from right to left, rather than from left to right!
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Hilbert Space

Definition (Hilbert Space)

A Hilbert space is an inner product space that is complete with respect to
the norm (or, metric) induced by the inner product.

Distance, Norm, Inner Product

d(u, v) = ∥u− v∥ =
√

⟨u, v⟩

A Hilbert space is a vector space equipped with an inner product that
induces a metric so that the space is a complete metric space.

Note that not all complete metric spaces are Hilbert spaces!
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What Left: for Future Lectures

Reading the equation,

d(u, v) = ∥u− v∥ =
√
⟨u, v⟩,

from left to right!
To do so, we might need the following (mainly the first one):

1 polarisation (form norms)
2 translation invariant (for metrics)
3 absolute homogenity (for metrics)
4 the notion of angle (between vectors); this is easy

cos θ =
⟨u, v⟩
∥u∥ ∥v∥

,

where θ is the angle between the vectors u and v in an inner product
space.

Thus, a Hilbert space covers the geometric notions of
length, distance, and angle.
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Reproducing Kernel Hilbert Space

Definition (RKHS)

Let Ω be an arbitrary set, and H a Hilbert space of functions f : Ω → F.
For each element x ∈ Ω, the evaluation functional that evaluates each
f ∈ H at the point x is written as

Lx : H → F or Lx : f 7→ f(x),

with Lxf = f(x) for all f ∈ H.
We say that H is a reproducing kernel Hilbert space (RKHS) if, for all
x ∈ Ω, Lx is continuous at every f ∈ H.
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Reproducing Property

Corollary (Reproducing Property)

Let Ω, f,H and Lx be defined as in the definition above. If every Lx is
continuous at every f ∈ H, then for each Lx, there is a unique function
Kx ∈ H such that for every f ∈ H,

Lxf = f(x) = ⟨f,Kx⟩H .

This equation is know as the reproducing property.

This basically follows from Riesz representation theorem.
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Reproducing Kernel Hilbert Space

Definition (RKHS)

Let Ω be an arbitrary set, and H a Hilbert space of functions f : Ω → F.
If, for each x ∈ Ω, the evaluation functional Lx : H → F is continuous at
every f ∈ H, we can construct the reproducing kernel, which is a bivariate
function K : Ω× Ω → F defined by

K(x, y) = ⟨Kx,Ky⟩H .

The Hilbert space H is called a reproducing kernel Hilbert space (RKHS).

This basically follows by replacing x with y and f by Kx:

Lyf = f(y) = ⟨f,Ky⟩H

and, if f = Kx,
Ly(Kx) = Kx(y) = ⟨Kx,Ky⟩H .

Ömür Uğur (IAM / METU) RKHS - Big Picture RKHS Seminars 17 / 20



RKHS

Continue with . . .

1 Introduction

2 Function Spaces

3 Reproducing Kernel Hilbert Space

4 The Kernel Trick
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The Kernel Trick

Let H be a given RKHS, we can then find a function φ : Ω → H: a
straighforward one is

φ(x) = Kx, for all x ∈ Ω,

which is possible by the reproducing kernel property.
In machine learning:

the function φ is the feature map,

the set Ω is the attributes,

the RKHS H is the feature space.

Therefore, the kernel trick used in machine learning (mostly) is the
identity:

K(x, y) = ⟨φ(x), φ(y)⟩H . (Kernel Trick)
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