more typo
This commit is contained in:
@@ -94,7 +94,7 @@
|
|||||||
"q_1 = \\frac{a_1}{\\|a_1\\|}\n",
|
"q_1 = \\frac{a_1}{\\|a_1\\|}\n",
|
||||||
"$$\n",
|
"$$\n",
|
||||||
"$$\n",
|
"$$\n",
|
||||||
"q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}\n",
|
"q_k = \\frac{a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j}{\\left\\|a_k - \\sum_{j=1}^{k-1} (q_j \\cdot a_k) q_j\\right\\|}, \\qquad k = 2, \\ldots, n\n",
|
||||||
"$$\n",
|
"$$\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Matrix form:\n",
|
"Matrix form:\n",
|
||||||
@@ -236,17 +236,17 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"We want to solve\n",
|
"We want to solve\n",
|
||||||
"\n",
|
"\n",
|
||||||
"$$ \\min_x \\|Ax - b\\|_2. $$\n",
|
"$$ \\min_x \\Vert Ax - b \\Vert_2^2. $$\n",
|
||||||
"\n",
|
"\n",
|
||||||
"If $A = QR$, then\n",
|
"If $A = QR$, then\n",
|
||||||
"\n",
|
"\n",
|
||||||
"$$ \\min_x \\|Ax - b\\|_2 = \\min_x \\|QRx - b\\|_2. $$\n",
|
"$$ \\min_x \\Vert Ax - b \\Vert_2^2 = \\min_x \\Vert QRx - b \\Vert_2^2. $$\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Since $Q$ has orthonormal columns:\n",
|
"Since $Q$ has orthonormal columns, and the normal equations boils down to\n",
|
||||||
"\n",
|
"\n",
|
||||||
"$$ R x = Q^T b. $$\n",
|
"$$ R x = Q^T b, $$\n",
|
||||||
"\n",
|
"\n",
|
||||||
"So we can solve using back-substitution.\n"
|
"we can therefore solve for $x$ by using back-substitution.\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@@ -55,7 +55,7 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## 2. Bisection Method\n",
|
"## 2. Bisection Method\n",
|
||||||
"\n",
|
"\n",
|
||||||
"**Assumption (Intermediate Value Theorem):** If f is continuous on ([a,b]) and (f(a),f(b) < 0),\n",
|
"**Assumption (Intermediate Value Theorem):** If f is continuous on $[a,b]$ and $f(a),f(b) < 0$,\n",
|
||||||
"then there exists $x^\\star$ in (a,b) with $f(x^\\star)=0$.\n",
|
"then there exists $x^\\star$ in (a,b) with $f(x^\\star)=0$.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"- Assumes $f$ is continuous on $[a,b]$ with $f(a)f(b)<0$.\n",
|
"- Assumes $f$ is continuous on $[a,b]$ with $f(a)f(b)<0$.\n",
|
||||||
|
Reference in New Issue
Block a user